PIXEL-LEVEL CRACK DETECTION IN LEVEE SYSTEMS:
A COMPARATIVE STUDY

Manisha Panta 1,2, Md Tamjidul Hoque 1,2, *, Mahdi Abdelguerfi 1,2, Maik C. Flanagin 3
Email: {mpanta1, thoque, mabdelgu}@uno.edu, maik.c.flanagin@usace.army.mil
1Canizaro/Livingston Gulf States Center for Environmental Informatics, New Orleans, US
2Department of Computer Science, University of New Orleans, US
3US Army Corps of Engineers, New Orleans District, US
Outline

1. Problem Statement
2. Existing Object Detection Method
3. Motivation
4. Segmentation Techniques
5. Experimental Setup
6. Conclusion
Problem Statement
Current Approach

- **Manual** inspection of collected images
- Stacking-based Machine Learning Method
- Single Shot MultiBox Detector (SSD) for **Object Localization**

Motivation

• Limited number of levee crack images
• Object detection model could not detect specific crack areas
• Deep Learning based Image segmentation techniques focus only on crack areas
• Useful in identifying size of cracks, crucial for precise monitoring
Segmentation Techniques

Original Image + Ground Truth → Predicted Segmentation Mask

gulfscei.cs.uno.edu
Encoder-Decoder Architecture

Contracting Path: Encoder extracts meaningful features
Expanding path: Decoder generates segmentation mask
Experimental Setup

Existing Methods
- ResUNet
- Segnet
- R2U-Net
- U-net
- Attention U-Net
- UNet++
- MultiResUnet

Evaluation
- Mean Intersection Over Union (mIoU)
- 10-Fold Cross Validation (10-Fold CV)

Dataset
- Augmented Benchmark Levee Crack Dataset [1650 images, 256 × 256 × 3]
- Independent Test Dataset [6 images]
Results
Examples of independent test data
• (a) original image
• (b) ground truth overlay on the original image
• (c) U-net prediction
• (d) MultiResUnet prediction
• (e) Attention U-net prediction
• (f) UNet++ prediction
Conclusion

• U-net, Attention U-net, UNet++ and MultiResUnet performed competitively 10-Fold CV evaluation

• Segmentation methods well suited for automated identification of cracks in levee systems
Thank You!