Plugins to Detect Vulnerable Plugins:
An Empirical Assessment of the Security Scanner
Plugins for WordPress

Daniel T. Murphy
University of New Orleans, USA
dtmurphl @uno.edu

Abstract—WordPress, possibly world’s the most popular Con-
tent Management System (CMS), which supports around 455
million websites and claims 60.3% of all content management
systems in use. The WordPress core is known to be relatively
secure, but its plugin ecosystem is not. 92% of vulnerabilities
found in WordPress powered websites are attributed to third-
party plugins that those websites depend on.

This paper presents an empirical study, where we examine the
efficacy of 11 WordPress security scanner plugins in the detection
of known vulnerabilities in another set of 51 insecure plugins.
The results are mixed, with some security scanner plugins failing
entirely and even the most effective plugins failing to identify
significant vulnerabilities. The findings are derived based on both
a quantitative analysis and a deeper qualitative analysis.

Index Terms—Security, Vulnerability, WordPress, Plugin, Web-
site, Web App, Empirical Study

I. INTRODUCTION

Web applications and web services are ubiquitous today, and
their use is ever increasing with the advancement of science,
technologies, and businesses. This growing availability of web
applications and web services presents attractive target for
malicious cyber attacks.

To facilitate the growing demand of web applications and
web services, a number of content management systems
(CMS) have become available. Such content management
systems allow users to easily create and deploy websites and
web applications, often requiring minimal or no technical
knowledge to use. Thus, many individuals as well as small
to medium businesses launch websites powered by CMS.

WordPress is possibly the most used content management
system by a large margin, mainly functioning as the back-end
for hundreds of millions of websites and claiming 60.3% of
all content management systems in use [1], [24]. WordPress
is available in over 100 languages and it seems fair to claim
that roughly 35% of the internet is powered by WordPress [1].

The expansive presence of WordPress makes the task of
securing the CMS vitally important. Fortunately, WordPress is
a relatively secure platform with a dedicated team of security
professionals monitoring the core software for vulnerabili-
ties and routinely releasing updates for addressing security
issues [27]. Unfortunately, although a great many secure
installations of WordPress exist, websites powered by this
CMS still remain a popular target of attacks.

Minhaz F. Zibran
Idaho State University, USA
MinhazZibran @isu.edu

Farjana Z. Eishita
Idaho State University, USA
FarjanaFishita@isu.edu

Attackers generally do not try to exploit flaws in the
WordPress core. Instead, they make use of vulnerabilities that
stem from two sources:

1) An average user of WordPress lacks the expertise to suf-
ficiently secure their site, and often unknowingly leaves
their website configuration in a vulnerable state.

2) WordPress, which was initially designed as a blogging
engine, allows developers to extend the functionality of
the CMS via third-party plugins.

The security of the third-party plugins is not guaranteed by
WordPress itself, and indeed, 92% of the vulnerabilities found
in WordPress powered websites are detected in third-party
plugins [28]. WordPress users depend upon the useful fea-
tures provided by these third-party plugins, therefore, plugin
security demands primary importance.

In addition, the users’ lack of expertise (in securing their
WordPress websites) must also be accounted for when con-
sidering how to improve the overall security of WordPress
powered websites. Compared to the users of other content
management systems, WordPress users have less experience
with security [25]. Advanced security tools (such as Nikto and
WPScan) may be beyond the abilities, ambitions, or means of
majority of the WordPress users.

To accommodate this lack of experience, a variety of
security scanner tools are conveniently available as WordPress
plugins. These security scanner plugins are meant to detect
security vulnerabilities in other WordPress plugins. Thus, in
the context of this particular work of ours, we are talking about
two categories of WordPress plugins: (a) feature-rich plugins,
which offer useful features, and (b) security scanner plugins,
which are meant to detect and expose the vulnerable plugins.

This paper presents an analysis of the efficacy of affordable
security tools that are easy to find, install, and utilize. As the
third-party plugins are the primary source of vulnerabilities
in WordPress powered websites [28], we particularly investi-
gate the ability of the security scanner plugins in detecting
vulnerable feature-rich plugins. The findings are derived from
both quantitative and qualitative analyses of the performance
of 11 independent security scanner plugins. These analyses are
conducted on a testbed composed of a website (we created)
having dependencies on 51 feature-rich plugins with known
security vulnerabilities.

II. BACKGROUND AND RELATED WORK

There are studies on the security and quality assessment of
source code and other artifacts [15], [16], [19], [17], [18] of
software systems in general using different security scanning
tools. Recently, Ryan et al. [20] conducted a study to assess
the efficacy of security scanners for Android applications.
This study of ours is completely different from all these
studies in its objective and procedure. Instead of assessing
the software artifacts or source code, we assess the efficacy
of the security scanner plugins in detecting vulnerabilities in
WordPress-powered web application.

The core issues addressed by this paper are the vulnera-
bilities represented by the WordPress plugin ecosystem and
the relative inexperience of its userbase. A study of existing
literature elucidates the evolution of both these issues. When
WordPress was first published in 2003, its co-author Matt
Mullenweg stated that the core mission of WordPress was
to “democratize publishing”. This remains a central goal of
WordPress today and is evident both in the popularity of
WordPress and the relative inexperience of its userbase. The
ability of WordPress to democratize publishing stems from
the ease with which users can extend its functionality via
community contributed plugins. These plugins allow what
is essentially a blogging tool to power applications ranging
from social community plugins to payment systems to medical
patient portals [21].

The current WordPress marketplace offers over 52,000
plugins, a remarkable feat, but one that unfortunately comes
at the cost of security [24]. While WordPress.org does have
a rudimentary review process for plugins, a staggering num-
ber of vulnerabilities make it past this review [26]. Indeed,
WordPress is the world’s most attacked CMS [27] and plugins
account for over 92% of detected vulnerabilities [28]. The
existing literature clearly indicates that plugins are the most
vulnerable aspect of WordPress. Therefore, vulnerable plugin
detection must be included in the functionality of any viable
WordPress security tool.

Why, given the security issues commonly associated with
WordPress, does it remain so popular? Its popularity stems di-
rectly from the original intent of Matt Mullenweg- the democ-
ratization of publishing means that even inexperienced users
can, through the WordPress plugin marketplace, build websites
with an incredible range of complex functionality. One might
imagine that giving users the power to easily create such
complex sites without the need to hire relatively expensive
professional developers, may result in both a userbase without
significant technical experience as well as web applications
whose creators are unaware of the security concerns associated
with their apps. Indeed, surveys indicate that the WordPress
userbase is both inexperienced and overconfident, a troubling
combination. In a survey conducted by Norrie et al. in 2014,
it is shown that 96% of WordPress users consider themselves
to be “Developers” despite less than 14% having a degree in a
programming related field [25]. In a survey sent to WordPress
users identifying as “Developers” by the software development

firm Delicious Brains, 91.6% of respondents are seen to come
from disciplines unrelated to software development [23].

Given the large number of attacks on WordPress sites,
one might surmise that there are not sufficient security tools
available to users. In fact, there are many widely available
tools that are easy to install and use. Additionally, several
of the most popular tools claim to address the issue of
plugin vulnerabilities. Unfortunately, existing literature largely
focuses on the efficacy of more complex static analysis tools,
but those tools are unlikely to be utilized by inexperienced
users. There is a definite need for studies that analyze popular
and easy to use tools, such as the Wordfence security plugin.
By merit of their popularity, these tools have the most potential
to reduce the number of WordPress exploits worldwide. The
goal of this study is to conduct such an analysis. The methods
for testing the efficacy of these popular plugins are outlined
in the next section.

III. METHODOLOGY

A. Selection of Security Scanner Plugins

As the goal of this work is to examine the the efficacy of
the security scanner plugins in exposing insecure/vulnerable
plugins, in this study, we include only those security scanner
plugins that match the following criteria.

o Plugin security — must claim to address plugin security

o Popular — must have 10,000+ active installs

o Easy to install — must be available in the WordPress.org

plugin repository

o Affordable — must offer a free tier for users on a budget.

(For the purposes of this study- only the free tier of a
plugin is analyzed)

Based on the above criteria, we obtain 11 WordPress
security scanner plugins for our study as presented in Ta-
ble I. All these security scanner plugins are downloaded from
https://wordpress.org.

TABLE I
SECURITY SCANNER PLUGINS EXAMINED IN THIS STUDY

. . . # of Active
Security Scanner Plugin Version Installs
Jetpack [8] 6.8 5,000,000+
WordFence Security [13] 7.4.12 3,000,000+
iThemes Security [7] 7.9.0 1,000,000+
All In One WP Security & Firewall [3] 444 900,000+
Bullet Proof Security [4] 4.3 60,000+
Security Ninja [2] 5.111 10,000+
Titan Anti-spam & Security [12] 7.2.1 100,000+
Sucuri Security [11] 1.8.24 700,000+
Defender Security [6] 2.4.5 40,000+
Cerber Security [5] 8.7 200,000+
SecuPress [10] 1.4.12 30,000+

Although this study is concerned with each security tool’s
ability to detect vulnerable plugins, it should be noted that
each of these tools offer a variety of protections beyond
plugin scanning, including reminders to update the WordPress
core and plugins, regional IP block lists and more. These
features do provide some level of security, but do not address

the primary threat represented by vulnerable plugins. Such
features are therefore not considered further in this paper.

B. Selection of Vulnerable Plugins

The popular Exploit Database maintained by Offensive Se-
curity [9] is used to identify WordPress Plugins that had been
flagged with known vulnerabilities over the past 2 years [9].
The majority were sourced from the wordpress.org directory,
although some were downloaded from third-party websites
such as github.com and directly from the Exploit Database.

Table II presents a list of the 51 feature-rich vulnerable/in-
secure plugins we choose along with their known security
vulnerabilities. In the 51 vulnerable plugins we have selected,
the most common vulnerability type is cross-site scripting at
37%, followed by SQL Injection at 20%. A full breakdown is
shown in Figure 1.

Parameter Tampering

Arbitrary File Transfer
Cross-site Scripting
SQL Injection
CSV Injection
Authentication
.
L4

Counts of WordPress plugins’ most common vulnerability types

Remote Code...

Local File Inclusion
Reverse Tabnabbing

Fig. 1.

C. Testbed Setup

In this work, we use WordPress version 5.0. We set up a
testbed based on the LAMP (Linux, Apache, MySQL, PHP)
stack, which is commonly used to host WordPress sites. It is
launched on an Oracle VM Virtual Box instance of Ubuntu
20.04.1. A WordPress powered website is hosted on Apache
2.4.41 running PHP 7.4.3 and MySQL 8.0.22. This website is
configured to use the 11 security scanner plugins one at a time.
The selected 51 WordPress plugins with known vulnerabilities
are installed, then the VM state is saved utilizing VBox’s
snapshot function. This saved snapshot contains the state of the
VM with fresh installation of those 51 vulnerable plugins. This
is done to ensure that each security plugin being examined
is installed on an identical instance of the WordPress site,
which is a necessity as some security scanner plugins would
permanently alter aspects of the WordPress installation, even
after being uninstalled.

D. Assessment Procedure

Each security scanner plugin is evaluated separately. Be-
fore examining the ability of an individual security scanner
plugin, the virtual machine’s state is reset to the state with
fresh installation of the vulnerable plugins. Then, the security
scanner plugin is installed. Finally, the plugin’s scan feature
was run and its results are analyzed to determine which, if
any, vulnerable plugins were detected.

IV. FINDINGS

In this section, we present the assessment of the security
scanner plugins and their comparative evaluation with respect
to their efficacy in detecting the vulnerable plugins. It must
be noted that the reported results from different security
scanner plugins are not perfectly comparable. For example,
two security scanner plugins, Security Ninja and WordFence,
both flag an equal number of vulnerable plugins, but Security
Ninja offers much more information regarding why a plugin
was flagged. Thus, determining which ones perform “better”
needs a subjective evaluation. We, therefore, first present the
initial quantitive results in Section IV-A, and then we present
a deeper qualitative assessment in Section IV-B.

A. Quantitative Results

In Figure 2, we present the number of vulnerable plugins
detected by the 11 security scanner plugins examined in this
study. Surprisingly, six out of those 11 security scanner plugins

securess ENNNS

Cerber Security 51
Defender Security 51
Sucuri security 51

Titan Anti-spam & Security

Security Ninja 35

Bullet Proof |ECEEE 21
All in One 51
iThemes 51
Wordfence “ 9
Jetpack 51

o identified missed

Fig. 2. Performance of Security Scanning Tools
completely failed in detecting any of the 51 vulnerable plugins.
These six failing security scanner plugins are: Cerber Security,
Defender Security, Sucuri Security, All in One WP Seurity,
iThemes Security, and Jetpack.

All six of those security scanner plugins require users to
upgrade to a premium, paid version of the plugin to access
the capabilities that would scan the plugin directory. This
phenomenon is further explored in Section IV-B.

For each of the remaining five security scanner plugins, we
now describe how many vulnerable plugins are successfully
detected and which security vulnerabilities existed in those
vulnerable plugins that escaped detection.

SecuPress demonstrated the best performance, correctly
identifying 43 vulnerable plugins, flagging 41 as “not up to
date” and 2 as not “updated for at least 2 years”. The scan

TABLE I

FEATURE-RICH WORDPRESS PLUGINS AND THEIR KNOWN VULNERABILITIES

Vulnerable Feature-rich Plugin

[Version | Known Vulnerability

Ad Manager WD 1.0.11 Arbitrary File Download
Add Mime Types 2.2.1 Cross-Site Request Forgery
Adicon Server 1.2 ‘selectedPlace’ SQL Injection
Advanced-Custom-Fields 5.7.7 Cross-Site Scripting
Ajax Load More 5.3.1 Authenticated SQL Injection
Anti-Malware Security and Brute-Force Firewall 4.18.63 | Local File Inclusion (PoC)
Appointment Booking Calendar 1.3.34 CSV Injection
Audio Record 1.0 Arbitrary File Upload
AutoSuggest 0.24 ‘wpas_keys’ SQL Injection
Autoptimize 2.7.6 Arbitrary File Upload
Baggage Freight Shipping Australia 0.1.0 Arbitrary File Upload
BBPress 2.5 Unauthenticated Privilege Escalation
Booking Calendar 8.4.3 (Authenticated) SQL Injection
Buddypress 6.2.0 Persistent Cross-Site Scripting
ChopSlider 34 ‘id” SQL Injection
Colorbox Lightbox 1.1.1 Persistent Cross-Site Scripting
Contact Form Builder 1.0.67 Cross-Site Request Forgery / Local File Inclusion
Contact Form Maker 1.13.1 Cross-Site Request Forgery
contact-form-7 5.1.6 Remote File Upload
Drag and Drop File Upload Contact Form 1.3.3.2 | Remote Code Execution
Easy Testimonials 32 Cross-Site Scripting
FooGallery 1.8.12 Persistent Cross-Site Scripting
Form Maker 1.13.3 SQL Injection
Google Review Slider 6.1 ‘tid> SQL Injection
GoURL.io 1.4.14 File Upload
Helpful 24.11 SQL Injection
Import Export WordPress Users 1.3.1 CSV Injection
Insert or Embed Articulate Content into WordPress 1.0 Remote Code Execution
JoomSport 33 SQL Injection
Like Button 1.6.0 Authentication Bypass
Loco Translate 2.2.1 Local File Inclusion
Maintenance Mode by SeedProd 5.1.1 Persistent Cross-Site Scripting
Multi-Scheduler 1.0.0 Cross-Site Request Forgery (Delete User)
OneSignal 1.17.5 ‘subdomain’ Persistent Cross-Site Scripting
PayPal Checkout Payment Gateway 1.6.8 Parameter Tampering
Plugin Media Library Assistant 2.81 Local File Inclusion
Popup Builder 3.49 Persistent Cross-Site Scripting
Postie 1.9.40 Persistent Cross-Site Scripting
Powie’s WHOIS Domain Check 0.9.31 Persistent Cross-Site Scripting
Search Meter 2.13.2 CSV injection

. . . Arbitrary File Upload
Simple File List 422 Remote Code Execution
Simple Membership 3.8.4 Cross-Site Request Forgery
Sliced Invoices 3.8.2 ‘post” SQL Injection
Social Warfare 353 Remote Code Execution
ultimate-member 2.1.3 Local File Inclusion
Wisechat 2.6.3 Reverse Tabnabbing
WooCommerce Product Feed 2.2.18 Cross-Site Scripting
WOOF Products Filter for WooCommerce 123 Persistent Cross-Site Scripting
WP Google Maps 7.11.18 | SQL Injection
WP Sitemap Page 1.6.2 Persistent Cross-Site Scripting

1.5.8.2 | Persistent Cross-Site Scriptin;

WPForms 1.6.3.1 Cross site scripting e

failed to detect some plugins having the following vulnerabil-
ities: SQL injection, CSV Injection, Cross-site scripting, and
Parameter tampering.

Wordfence correctly identified 42 vulnerable plugins, flag-
ging them as “threats”. 37 plugins were listed as “critical
threats” and four as “medium threats”. The problem associated
with every flagged plugin was of “type: Plugin Upgrade”. The
scan allowed some plugins with the following vulnerabilities
to go undetected: SQL Injection, SCV Injection, Cross-site
scripting.

Bullet Proof Security flagged 30 plugins as containing
“suspicious files”. It should be noted that Bullet Proof flagged
a total of 1,342 files as “suspicious”, but only 30 of them
were located in plugins. The scan allowed some plugins with
the following vulnerabilities to go undetected: SQL Injection,
CSV Injection, Cross-site scripting, Privilege escalation, Re-
mote code execution, Arbitrary File Download.

Security Ninja flagged 16 vulnerable plugins, listing the
vulnerability type and linking to the relevant CVE page. The
scan allowed some plugins with the following vulnerabilities

to go undetected: Parameter tampering, SQL Injection, CSV
Injection, Cross-site scripting, Privilege escalation, Remote
code execution, Arbitrary File Download.

Finally, Titan Anti-spam & Security successfully identified
11 vulnerable plugins, flagging suspicious files found in each
plugin’s directory. Additionally, Titan highlighted the suspi-
cious code found in each file. It failed to identify some plugins
with the following vulnerabilities: Arbitrary File Transfer,
Cross-site Scripting, SQL Injection, CSV Injection, Local File
Inclusion, Authentication, Parameter Tampering, Remote Code
Execution, Reverse Tabnabbing.

B. Qualitative Assessment

The most alarming finding is that despite claiming to
provide plugin security, six of the security tools studied
(representing over 7,840,000 active installs) provide no capa-
bility for identifying vulnerable plugins under their free-tier.
This is a popular strategy for “freemium” WordPress plugins,
whereby the free-tier provides basic functionality but requires
an upgrade to a paid-tier to access additional features [14].

The basic functionality offered by these plugins commonly
includes features like block lists, login obfuscation, and mon-
itoring the integrity of WordPress core files. These are all
legitimate security features, but they fail to address the biggest
threat to WordPress security, plugin exploits. Considering that
installing any security plugin may offer a false sense of secu-
rity, it seems reasonable to conclude that many users will not
be motivated to upgrade to a paid-tier of these security tools,
leaving millions of sites unknowingly unprotected against the
most common threats.

Of the security tools that did successfully identify at least
some vulnerable plugins, the results are challenging to quantify
given that no two tools provide their results in the same
format. Some of the best performing tools provide little to no
information regarding the type or severity of the detected vul-
nerabilities. Other plugins had inferior detection rates, but did
provide extensive threat descriptions. Since these descriptions
provide a context that may inform a user’s decision to upgrade
or delete a vulnerable plugin, the utility of security tools
cannot be based on their total identifications alone. Therefore,
instead of a delineated ranking, a brief analysis addressing the
merits of each tool is called for. We omit from consideration
the tools that failed to provide free-tier plugin vulnerability
support.

Titan Anti-spam & Security flagged 11 vulnerable plugins
and provided details regarding the suspicious code that trig-
gered the detection. Interestingly, in all 11 cases the suspicious
code involved the use of the JavaScript eval function. While
there are legitimate uses of the function, it is also true that
eval (which allows JavaScript to execute arbitrary strings as
code) is a common source of security vulnerabilities [22].
Unfortunately, the eval function was not the source of the
reported vulnerability in the plugins identified. Additionally,
it is unlikely that the average user is aware of the security
implications of the eval function, limiting the utility of this
information.

Although SecuPress performed the best in terms of number
of detections, it provided limited context for the detections
stating only that identified plugins were using an “out of date”
version, or that no new versions had been released for over
2 years. Identifying plugins that haven’t been updated for a
long time is useful information, but simply stating that plugin
is “out of date” (representing 41 of SecuPress’ 43 detections)
is less helpful. There are valid reasons for not upgrading a
plugin to a newer version. For example, if the next version
removes or breaks needed functionality while not offering any
security updates, a developer could reasonably skip the update.
Not being given a reason beyond “out of date” could lead a
developer to make a false assumption that their version of the
plugin is still secure. Further, this functionality (identifying out
of date plugins) is already provided by the WordPress core.

Wordfence performed similarly, identifying the 41 plugins
that were out of date as requiring a “plugin upgrade”. As noted
for SecuPress, this description provides limited utility.

Bullet Proof Security appears to perform well, identifying
30 vulnerable plugins. However, those plugin detections were a
subset of 1,342 “issues” detected by the tool. These issues are
all labelled as “Suspicious File” and the “Pattern Match” that
caused the file to be flagged is listed. The task of identifying
vulnerable plugins from such a large list is challenging,
making Bullet Proof Security an inadequate tool for casual
users.

Security Ninja correctly identified only 16 vulnerable plug-
ins, but the details it provided are commendable. For example,
the Media Library Assistant plugin was flagged with the
following description: “The Media Library Assistant plugin
before 2.82 for Wordpress suffers from a Local File Inclusion
vulnerability in mla_gallery link=download.”

This tool not only correctly identifies the source of the
vulnerability, but also provides valuable context for the user,
allowing them to choose an appropriate course of action.

V. THREATS TO VALIDITY

Construct Validity and Internal Validity: In this work, we
used a testbed composed of a dummy WordPress website
having dependencies on the 51 vulnerable plugins. This setup
may not ideally represent a typical usage scenario of those
plugins. However, it enables us to examine the 11 security
scanner plugins’ abilities to detect those vulnerable ones. To
prevent any side-effects of one security scanner plugin on
another, before invoking each security scanner plugin, we reset
the testbed and thus we made sure that each security scanner
plugin is operated on an identical fresh testbed.

One may argue whether it could be better to have included
paid versions of the commercial security scanner plugins. We
deliberately chose not to go along that direction as affordable
security has remained a prime criteria for this particular work
of ours. We plan to conduct a separate study in future on the
paid versions of the commercial security scanner plugins.
External Validity: Our study examines only WordPress se-
curity scanner plugins operated on 51 feature-rich vulnerable
WordPress plugins. Thus the results of this work may not be

generalizable to the variety of content management systems
other than WordPress. Recall that, this work particularly
focused on WordPress powered websites, since WordPress is
the most popular content management system, which claims
60.3% of all content management systems in use [24].

Our testbed includes only 51 WordPress feature-rich plugins
with known vulnerabilities on which 11 security scanner
plugins are separately operated one by one. One may argue that
the results based a dataset of this size may not be generalizable
enough. While it is true that a larger dataset could yield higher
confidence in generalizability, our dataset, having been drawn
from a popular Exploit Database [9], helps in maintaining high
reliability/reproducibility of this work. Moreover, this dataset
includes the vulnerable plugins recently flagged over past two
years [9].

Reliability: The methodology of data collection, analysis, and
results are well documented in this paper. All the security
scanner plugins and the vulnerable feature-rich plugins are
publicly available online. The particular versions of these
plugins used in this work are also clearly mentioned in Table I
and in Table II. Hence, it should be possible to replicate this
study.

VI. CONCLUSION

In this paper, we have presented an empirical assessment
of the WordPress security scanner plugins’ efficacy in the
detection of vulnerable feature-rich plugins. We have exam-
ined 11 WordPress security scanner plugins by operating them
separately on a testbed composed of a WordPress powered
website with dependency on 51 feature-rich plugins having
known security vulnerabilities.

We have found that performances of the security scanner
plugins largely vary in their sensitivity to insecurities in the
vulnerable plugins. We have also found that some security
scanner plugins are more expressive than others in their
reporting of the detected vulnerable plugins.

While the WordPress core itself is known to be relatively
secure, the vast WordPress plugin eco-system is certainly
not, indicating a significant threat to around 455 million
WordPress powered websites [1] and their billions of viewers.
Unfortunately, all the security scanner plugins analyzed in this
study failed to adequately address this threat.

The most striking finding of this study is that, at the time of
writing, there is not a single free WordPress security scanner
plugin capable of sufficiently detecting and flagging plugin
vulnerabilities. At least, we were not able to find such a free-
tier WordPress plugin. This is surprising considering that each
vulnerability targeted in this study is listed on the publicly
viewable site at exploit-db.com [9]. Given this result, one may
reasonably surmise a connection between WordPress being
possibly the most attacked CMS in the world, and the failure
of the most popular security tools in alerting WordPress users
to even publicly known plugin vulnerabilities.

REFERENCES

[1] 2020’s Most Surprising WordPress Statistics.
https://www.whoishostingthis.com/compare/wordpress/stats/, 2021.

[2]
[3]

[4]

[5]
[6]

[7]
[8]
[9]

[10]
(11]
[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Security Ninja. https://wordpress.org/plugins/security-ninja/, 2021.

All In One WP Security & Firewall. https://wordpress.org/plugins/all-
in-one-wp-security-and-firewall/, verified: May 2021.

Bullet Proof Security. https://wordpress.org/plugins/bulletproof-
security/, verified: May 2021.

Cerber Security. https://wpcerber.com, verified: May 2021.

Defender Security. https://wordpress.org/plugins/defender-security/, ver-
ified: May 2021.

iThemes. https://ithemes.com/security/, verified: May 2021.

Jetpack. https://jetpack.com, verified: May 2021.
Offensive Security Exploit Database Archive.
verified: May 2021.

SecuPress. https://secupress.me, verified: May 2021.

Sucuri Security. https://sucuri.net, verified: May 2021.

Titan Anti-spam & Security. https://wordpress.org/plugins/anti-spam/,
verified: May 2021.

Wordfence. https://www.wordfence.com, verified: May 2021.

Jordi Cabot. Wordpress: A content management system to democratize
publishing. IEEE Software, 35(3):89-92, 2018.

M. Islam and M. Zibran. A comparative study on vulnerabilities in
categories of clones and non-cloned code. In Proceedings of the 10th
IEEE International Workshop on Software Clones, pages 8-14, 2016.
M. Islam and M. Zibran. On the characteristics of buggy code clones: A
code quality perspective. In Proceedings of the 12th IEEE International
Workshop on Software Clones, pages 23 — 29, 2018.

M. Islam and M. Zibran. How bugs are fixed: Exposing bug-fix patterns
with edits and nesting levels. In Proceedings of the 35th ACM/SIGAPP
Symposium on Applied Computing, pages 1523-1531, 2020.

M. Islam and M. Zibran. What changes in where? an empirical study of
bug-fixing change patterns. ACM Applied Computing Review, 20(4):18—
34, 2021.

M. Islam, M. Zibran, and A. Nagpal. Security vulnerabilities in
categories of clones and non-cloned code: An empirical study. In Pro-
ceedings of the 11th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 20-29, 2017.

R. Joseph, M. Zibran, and F. Eishita. ~Choosing the weapon: A
comparative study of security analyzers for android applications. In
Proceedings of the International Conference on Software Engineering,
Management and Applications, pages 1-7 (to appear), 2021.

T. Koskinen, P. Ihantola, and V. Karavirta. Quality of wordpress plug-ins:
An overview of security and user ratings. In Proceedings of International
Conference on Privacy, Security, Risk and Trust (PASSAT), pages 834—
837. IEEE Computer Society, 2012.

Fadi Meawad, Gregor Richards, Floredl Morandat, and Jan Vitek. Eval
begone!: Semi-automated removal of eval from javascript programs. In
Proceedings of International Conference on Object-Oriented Program-
ming, Systems, Languages & Applications, pages 607-620, 2012.

WP Offload Media. How Much Money Do WordPress Developers
Make? That and More Insights on the Life of a WordPress Developer in
Our First-Ever Industry Report. https://deliciousbrains.com/wordpress-
developer-statistics/, 2019.

Oslien Mesa, Reginaldo Vieira, Marx Viana, Vinicius H. S. Durelli,
Elder Cirilo, Marcos Kalinowski, and Carlos Lucena. Understanding
vulnerabilities in plugin-based web systems: An exploratory study of
wordpress. In Proceedings of the 22nd International Systems and
Software Product Line Conference-Vol. 1, pages 149-159, 2018.

Moira C. Norrie, Linda Di Geronimo, Alfonso Murolo, and Michael
Nebeling. The forgotten many? a survey of modern web development
practices. In Proceedings of the 14th International Conference on Web
Engineering, Lecture Notes in Computer Science, vol 8541, pages 290—
307. Springer International Publishing, 2014.

Jukka Ruohonen. A demand-side viewpoint to software vulnerabilities
in wordpress plugins. In Proceedings of the Evaluation and Assessment
on Software Engineering (EASE), pages 222-228. ACM, 2019.

Hannes Trunde and Edgar Weippl. Wordpress security: An analysis
based on publicly available exploits. In Proceedings of the 17th
International Conference on Information Integration and Web-Based
Applications & Services, pages 1-7. ACM, 2015.

James Walden, Maureen Doyle, Grant A. Welch, and Michael Whelan.
Security of open source web applications. In Proceedings of the
Third International Symposium on Empirical Software Engineering and
Measurement (ESEM), pages 545-553. IEEE Computer Society, 2009.

http://exploit-db.com,

