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Abstract— Web spam is a serious threat for both end-users and
search engines (w.r.t., query cost). Webgraphs can be exploited
in detecting spam. In the past, several graph mining techniques
were applied to measure metrics for pages and hyperlinks. In this
paper, we justify the importance of webgraph to distinguish spam
websites from non-spam ones based on several graph metrics
computed for a labelled dataset (WEBSPAM-UK2007) and justify
our model by testing on uk-2014 dataset, the most recently
available dataset on the same (uk) domain. WEBSPAM-UK2007
dataset includes 0.1 million different hosts and four kinds of
feature sets: Obvious, Link, Transformed Link and Content.
We use five prominent machine learning (ML) techniques (i.e.,
Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Logistic Regression, Naı̈ve Bayes and Random Forest) to build a
ML-based classifier. To evaluate the performance of our classifier,
we compute accuracy and F-1 score and perform 10-fold cross
validation. We also compare graph based features with content
based textual features and find that graph properties are similar
or better than text properties. We achieve above 99% training
accuracy for most of our machine learning models. We test our
model with uk-2014 dataset with 4.7 million hosts for the graph-
based feature sets and achieve accuracy in between 90-94% for
most of the models. To the best of our knowledge, prior works
on web spam detection with WEBSPAM-UK2007 dataset did not
use different test dataset for their models. Our model classifier
is capable of detecting web spam for any input webgraph based
on its graph metrics features.

Index Terms—webgraphs,web spam, machine learning, graph
mining, security

I. INTRODUCTION

The study of webgraphs has a significant importance in
Web mining, i.e., learning useful structural and organizational
information of the Web [1]–[3]. Webgraph is a graph having
static HTML pages as nodes (vertices) and directed hyperlinks
among the pages as edges [4]. In graph (network) mining,
computing various structural properties of webgraphs is chal-
lenging due to the size of such graphs. Webgraph has great
research potentials concerning web security.

Detecting web spam is one of the aspects among several
security vulnerabilities. Web spam is a technique being used
by some websites to appear in search engines with high rank
but low quality. Cloaking, link spam, buying backlinks, content
spam, URL spam, redirection, etc., are some of the tactics of
web spamming. Link spam consists of the creation of a link
structure, usually a tightly knit community of links, aimed
at affecting the outcome of a link-based ranking algorithm.
Content spam is done by maliciously crafting the content
of web pages [5], for instance, by inserting keywords that

are more related to popular query terms than to the actual
content of the pages. Cloaking consists of sending different
content to a search engine than to the regular visitors of a web
site [6]. The aforementioned disastrous effects of web spam
motivates our work. Archives [7] are becoming more and more
concerned about spam in view of the fact that, under different
measurement and estimates, roughly 10% of the websites and
20% of the individual pages constitute spam. The above figures
directly translate to 10% to 20% waste of archive resources in
storage, processing and bandwidth with a permanent increase.
The increasing resource waste will question the economic
sustainability of the preservation effort in the near future [8].

Webgraph is a potential source of detecting web spam based
on graph based features. Emerging graph mining techniques
can be used to detect spam in a scalable manner consid-
ering the large size of webgraph. Triangle count, clustering
coefficient, triangular density, vertex jaccard similarity, vertex
cosine similarity, and centrality measures are among potential
features of either pages or hyperlinks to be used as features
calculated from webgraphs rather than the contents of the
pages. During our study, we face the difficulty to find labelled
data of spam/non-spam. It shows the need for a machine
learning classifier to predict spam based on the currently
available labelled dataset. For this reason, we choose the
classic WEBSPAM-UK2007 labelled dataset for developing
our model classifier.

Web spam filtering, the domain of devising methods to
detect useless and spam web content with the target of
manipulating search engine results, has drawn much attention
in the past years [9]–[11]. Recently the achievements against
the ‘classical‘ web spam seems to be in slow pace [12] and
the focus of researchers has apparently altered towards closely
related areas such as spam in social networks [13]–[15]. In this
study, we emphasize on detecting web spam from webgraph.
We figure out the best machine learning technique for each
feature set. We compare how the performance vary between
graph based features and text based features. We generate
graph-based feature set from webgraph for our test dataset and
can be applied to any webgraph for feature generation. Our
model is tested on different dataset and achieve around 94%
accuracy. We also analyze if there is any performance change
using different machine learning tools, e.g., Scikit-learn [16]
and Weka [17].

The rest of this paper is organized as follows. We describe
the related work in Section II. Background of machine learning



techniques are discussed in Section III. In Section IV, we
describe our dataset, our machine learning classifiers, our
validation approaches, generating features for testing data, and
improvements to the models with feature selection. A detailed
analysis of the results is described in Section V . Finally,
Section VI summarizes the findings and concludes the paper
with a discussion of future possibilities.

II. RELATED WORKS

Several works have been done on web spam but only few
focus on webgraph’s graph properties to detect web spam.
Most of the works have been done based on link spam, content
spam and cloaking. Erdélyi et al. investigated how much
various classes of web spam features, some requiring very
high computational effort, added to the classification accu-
racy [18]. Zhou et al. developed novel and effective detection
methods for link spam target pages using page farms [19].
Ntoulas et al. devised methods for detecting content spam
using classifiers [20]. Mishne et al. used language model
disagreement [21] for link spam detection. These content
spam detection techniques were similar to spam in e-mail.
Chellapilla et al. [6] proposed estimating query popularity
and monetizability by analyzing search engine query logs
and online advertising click-through logs, respectively. They
also presented a new measure for detecting cloaked URLs
that used a normalized term frequency ratio between multiple
downloaded copies of web pages.

Becchetti et al. used triangle count and clustering coefficient
to show the distinction between spam and non-spam [1].
Becchetti et al. later extended their work with several link and
node based graph metrics for web spam detection [22]. Castillo
et al. presented a spam detection system that used the topology
of the webgraph by exploiting the link dependencies among
the web pages as well as the content of the pages [23]. Authors
in [24] used TWSVM (Twin SVM) with two non-linear kernels
for spam page detection using WEBSPAM-UK2007, the same
dataset as ours. Again, many works [24]–[26] have been done
using WEBSPAM-UK2007 for spam detection recently but
different from ours. Their work did not emphasize on the
graph-based features generated from the webgraph. Iqbal et.
al [26] showed that Random Forest is the best classifier for
the given dataset. But they have not provided the detailed
implementation (i.e. values for the parameters of the machine
learning models used) for their work. Therefore, we can not
compare our work with theirs. In our experimentation, we have
found SVM reigning over the other models during training.
The main reason of this distinction might be that they only
focused on detecting spam on any of the features irrespective
of the feature type. They intermingled all of the feature sets
and found Random Forest working best for their model. But
we mainly focused on revolving our result through Link based
and Transformed Link based features those can be generated
from the webgraphs, along with we also analyzed Obvious
and Content feature sets as well to gain insights. Some other
works [27], [28] also contributed to detect web spam using
different machine learning models and datasets. Nevertheless

none of those used a different test dataset to show the test
accuracy of the models. Besides, they used pre-computed
feature sets for the labelled dataset and did not provide any
idea how to generate features for different data to test their
models.They did not test their model on a different dataset
and reported training accuracy only. We have tested our model
on a different most recently available dataset, uk-2014 on the
same uk domain, and achieved at most 94% accuracy.

III. PRELIMINARIES

In this section we discuss the basics of machine learning
techniques we have used throughout the paper.

A. Machine Learning Models

Here we describe the well-known machine learning algo-
rithms for classification that we have used in our experiments.

1) Support Vector Machine: Support Vector Machine
(SVM) is a supervised machine learning algorithm which
can be used for both classification or regression challenges.
However, it is mostly used in classification problems [29].
SVM works by finding a line that best separates the data
into two groups. This is done using an optimization process
that only considers those data instances in the training dataset
that are closest to the line that best separates the classes.
The instances are called support vectors, hence the name of
the technique [30]. Different SVM algorithms use different
types of kernel functions. These functions can be of different
types. For example, linear, nonlinear, polynomial, radial basis
function (RBF), and sigmoid. The kernel functions return
the inner product between two points in a suitable feature
space. A linear kernel is used as normal dot product between
any two given observations. A polynomial kernel is a more
generalized form of the linear kernel. The polynomial kernel
can distinguish curved or nonlinear input space. RBF can map
an input space in infinite dimensional space. Equations for
some of the SVM kernels are given in Table I [31]–[33].

TABLE I: Kernel Functions of SVM

Kernel Equation Parameters
Linear K(x, xi) = sum(x ∗ xi)

Polynomial K(x, xi) = 1 + sum(x ∗ xi)d
d is the degree of
the polynomial

RBF K(x, xi) = exp(−γ ∗sum((x−x2i )) γ = [0, 1]
Sigmoid K(x, xi) = tanh(αxT y + c) α is the slope

SVM does not perform well when the dataset is very large–
that is due to the required training time becoming higher. It
also does not perform very well if the data set has significant
noise, i.e., the target classes are overlapping [34]. Considering
our dataset size as well as classes, we choose SVM for our
classifier.

2) K-Nearest Neighbor: The K-Nearest-Neighbor (KNN) is
a non-parametric classification method. It is a simple algorithm
that stores all available cases and classifies new cases based
on a similarity measure (e.g., distance functions given in Table
II). One of the most popular choices to measure this distance
is known as Euclidean. KNN classifier requires storing the



TABLE II: Distance Functions for KNN

Distance
Function Equation Parameters

Euclidean D(x, p) =
√

(x− p)2
x and p are the query
point and a case from
the examples sample

Euclidean
squared D(x, p) = (x− p)2

City-block D(x, p) =| (x− p) |
Chebyshev D(x, p) =Max(| (x− p) |)

whole training set and may be too costly when this set is
large [35] . KNN algorithm also supports both classification
and regression [36]. An object is classified by a majority vote
of its neighbors, with the object being assigned to the class
most common among its K nearest neighbors (K is a positive
integer, typically small). If K = 1, then the object is simply
assigned to the class of that single nearest neighbor.

3) Logistic Regression: Logistic regression is a binary
classification algorithm [37]. The algorithm learns a coefficient
for each input value, which are linearly combined into a
regression function and transformed using a logistic (s-shaped)
function shown in Equation 1. The function maps any real
value into another value between 0 and 1. Logistic regression
is a fast and simple technique, but can be very effective on
some problems [30].

S(z) =
1

1 + e−z
(1)

where,
s(z) = output between 0 and 1 (probability estimate)
z = input to the function (algorithm‘s prediction e.g. mx+ b)
e = base of natural log

4) Naı̈ve Bayes: Naı̈ve Bayes uses a simple implementation
of Bayes Theorem (hence naive) where the prior probability
for each class is calculated from the training data and assumed
to be independent of each other (technically called condition-
ally independent). There are multiple variations of the Naive
Bayes algorithm depending on the distribution of P (xi | y).
Three of the commonly used variations are Gaussian, Multino-
mial and Bernoulli [38]. The Gaussian Naı̈ve Bayes algorithm
assumes distribution of features to be Gaussian or normal, i.e.,

P (xi | y) =
1√
2πσ2

y

exp

(
− (xi − µy)

2

2σ2
y

)

where, P (xi | y) denotes the conditional probability of an
object with a feature vector xi belonging to a particular class
y
σ =standard deviation, µ =mean
The Multinomial Naı̈ve Bayes algorithm is used when the data
is distributed multinomially, i.e., multiple occurrences matter
a lot. The Bernoulli algorithm is used when the features in
the data set are binary-valued. The decision rule for Bernoulli
Naı̈ve Bayes is based on Equation 2. It explicitly penalizes
the non-occurrence of a feature i that is an indicator for class
y [16].

P (xi | y) = P (i | y)xi + (1− P (i | y))(1− xi) (2)

Naı̈ve Bayes has been shown to be a very effective clas-
sification algorithm [30]. The Naı̈ve Bayes classifier is sur-
prisingly effective in practice since its classification decision
may often be correct even if its probability estimates are
inaccurate [39].

5) Random Forest: Random forests are used for robust clas-
sification, regression and feature selection analysis. Random
Forests are an ensemble of k untrained Decision Trees (trees
with only a root node) with M bootstrap samples (k and M do
not have to be the same) trained using a variant of the random
subspace method or feature bagging method [40]. It is very
user-friendly in the sense that it has only two parameters (the
number of variables in the random subset at each node and the
number of trees in the forest), and is usually not very sensitive
to their values [41].

B. Validation of Models

In this section we describe the validation techniques we have
used for our classifier. In machine learning we usually split our
data into two subsets: training data and testing data so that the
model can be trained and tested on different data. It provides a
better estimate of out-of-sample performance, but still a ”high
variance” estimate. It is useful due to its speed, simplicity, and
flexibility [42]. The training set contains a known output and
the model learns on this data in order to be generalized to other
data later on. The test dataset (or subset) is used in order to test
our model‘s prediction on this subset. When dataset is small,
splitting data into train and test sets reduces the efficiency of
the model as all of the data cannot be used for training. In
such case, k-fold cross-validation is used where full dataset
can be used for training the model.

Cross validation is a re-sampling procedure used to evaluate
machine learning models on a limited data sample [43]. It is
primarily used in applied machine learning to estimate the skill
of a machine learning model on unseen data. This approach
involves randomly dividing the set of observations into k
groups, or folds, of approximately equal size. The first fold
is treated as a validation set, and the method is fit on the
remaining k− 1 folds [44]. In k-fold cross-validation, sample
is partitioned into k folds. Each fold is left out of the design
process and used as a testing set, and the estimate is the overall
proportion of error committed on all folds [45].

IV. METHODOLOGY

We describe our dataset, the building of our machine learn-
ing classifier, feature selection and validation in this section.

A. Dataset

We have worked with publicly available WEBSPAM-
UK2007 dataset [46] consisting of 105,896,555 nodes repre-
senting pages and approximately 3.7 billion edges representing
hyperlinks to train our model. The collection contains 114,529
different hosts. The dataset was collected by the research
group of the Laboratory of Web Algorithmics at the Università
degli Studi di Milano. Within the labelled dataset 5.19% was
labelled as ’spam’ and 88.33% was ’non-spam’. The rest



6.48% was labelled ’undecided’. We have not included the
undecided data in our classification and filtered out ‘spam’
and ’non-spam’ within the labelled dataset. We have used
pre-computed feature set calculated from webgraph and html
contents of the pages. The features are computed from the
full webgraph for graph-based features. So eliminating the
undecided points for building the model does not affect the
already computed feature values. The reason is, the features
reflect the connectivity of the network, different network
properties irrespective of a particular host is taking part in
classification model or not. Connectivity among particular
groups (spam/non-spam) or the intra-connection among a
particular group is not being taken into consideration in current
feature set. So, omitting the undecided points does not impact
the values of feature sets. A brief description of the features are
described in Table III. The obvious feature set has 2 features:
the number of pages in the host and the number of characters in
the host name. The Link Feature set has been computed from
the following graph metrics: PageRank, in-degree, out-degree,
Truncated PageRank, and TrustRank. The detailed description
of some of the features are given in Subsection IV-B. The
Link Feature set consists of features taking the logarithms and
ratio of the features from Link Feature Set. Content Feature
Set has features generated from text by counting words in the
webpages.

Although the data was crawled a long time back, we
have chosen to work with it for some specific reasons. The
unavailability of labelled data is one of the main reasons.
Another important reason is that we mainly want to focus on
the webgraph properties and those specific values related to
spam class. Also, our work is comparable to others who have
used the same dataset very recently. As, we do not emphasize
on the text based classification of spam that changes over
time, it is quite reasonable to work with a well-known labelled
dataset.

TABLE III: Feature Sets used in our Experimentation

Feature Set Source Feature Description Count

Obvious Graph
the number of pages in the host and
the number of characters in the host
name

2

Link Graph in-degree, out-degree, pagerank and
more [22] 41

Transformed
Link Graph ratio of indegree and outdegree, av-

erage, reciprocity, log and more [22] 137

Content Text

number of words in the home page,
average word length, average length
of the title, etc., for a sample of pages
on each host [23]

96

For Testing our validated model classifier, we have worked
with a different dataset that is uk-2014 webgraph [47]–[49].
This graph is a large snapshot of the .uk domain taken at the
end of 2014 . The maximum number of pages per host was
set to 10000. The webgraph has 787.8 million nodes and 107
billion edges. The total number of hosts is 4.7 millions, the
number of instances for our test dataset.

Fig. 1: Overview of Feature Generation Steps

B. Feature Generation for Test Data

We have computed the features for Link and Transformed
Link Feature Sets by computing the graph metrics from the
uk-2014 webgraph. The steps to generate the feature sets is
given in Fig. 1. We have included only those features where the
computation involves PageRank, in-degree and out-degree. We
have omitted features involving computation of TrustRank and
TruncatedPageRank because the computation for these metrics
for the labelled dataset is not described and may introduce
variation in values. For each host, we include the computation
for both home page and the page with maximum PageRank.

1) Link Feature Set: The features we compute for Link Fea-
ture Set are the following: In-degree, Out-degree, PageRank,
Assortativity coefficient (ratio of degree and average degree of
neighbors) , Average in-degree of out-neighbors, Average out-
degree of in-neighbors, Standard deviation of the PageRank of
in-neighbors . So, in total we get 15 features for Link Feature
Set.

2) Transformed Link Feature Set: In case of Transformed
Feature Set, we similarly compute for both home page and
page with maximum PageRank. We take logarithm of each
of the previous features for the Transformed Feature Link Set.
Besides, we also compute Ratio of Log of sum of the in-degree
of out-neighbors, Log of sum of the out-degree of in-neighbors,
Log of ratio of in-degree and PageRank, Log of ratio of out-
degree and PageRank, log of ratio of Standard deviation of
the PageRank of in-neighbors and PageRank. Total number of
features for Transformed Link Feature Set is 25.

Pseudocode for feature generation is given in Algorithm 1

C. Environment

The experiments have been performed on an Intel Core i7-
4770 CPU @ 3.4GHz×8 processor and 16 GB RAM machine.
During feature generation, we have used MATLAB to compute
the in-degree, out-degree, PageRank from uk-2014 webgraph.
Further we use Python Pandas DataFrame to calculate the
features. We have used Python Scikit-learn [16] [50] and
Weka (Java) [17] [51] to build our classifier based on various
machine learning models.

D. Building Classifier

We have used 5 well-known machine learning models to
build our classifier. In machine learning there are no best
algorithms according to Wolpert’s “no free lunch” theorem.
Some algorithms work better with some application or data.



Algorithm 1: Graph-based Feature Generation from We-
bgraph

Data: Input Webgraph, G in BVGraph Format; Host
Graph, GH

Result: Feature Sets
1 for Each node in G do
2 calculate PageRank()
3 calculate In-Degree()
4 calculate Out-Degree()
5 end
6 for Each node in G do
7 match url(G,GH)
8 set pair(node-id,host-id)
9 end

10 for Each node i in GH do
11 host list ← get list(i)
12 find homepage(i)
13 for Each node j in host list do
14 PageRank Max[i]← MAX(PageRank(j))
15 node max← j

/* Calculate features for Link
Feature Set */

16 in degree[i] ← SUM(In-degree(j))
17 out degree[i] ← SUM(Out-degree(j))
18 PageRank[i] ← AVG(PageRank(j))

/* ............ Calculate Rest
Features ................ */

19

20 end
21 end
/* Calculate features for Transformed

Link Feature Set from the previous
generated features */

So we have chosen some of the best algorithms that might
work better for our dataset. A brief description of tweaking
the parameters for each of the models to build our classifier
is described in this section.

1) SVM: For Scikit-learn, we have used different kernels
(linear, polynomial, sigmoid, rbf) and gamma values. We
get the best result using kernel=rbf, C=1 and gamma=scale.
Whereas for Weka, the best accuracy is achieved with poly-
nomial kernel.

2) KNN: At first, we have determined the optimal value
of K from Scikit-learn shown in Fig. 2. We have used the
same value of K in Weka as well. The optimal values of K
for Obvious Feature Set are 6 and the values greater than 7.
The maximum accuracy for Link Feature Set can be found
for k = 8, 10; k >= 20. For Transformed Link Feature Set,
K = 10;K >= 20 are the optimal values of K. The optimal
value for Content Feature Set is 4.

3) Logistic Regression: We have used Scikit-learn default
parameters with saga solver and 50000 maximum iterations to
get the best accuracy. Weka in its default setting shows the

 0.936

 0.938

 0.94

 0.942

 0.944

 0.946

 0.948

 0.95

 5  10  15  20  25  30

10
-f

ol
d 

C
ro

ss
 V

al
id

at
io

n 
A
cc

ur
ac

y

Value of K for KNN

Obvious Feature Set
Link Feature Set

Transformed Link Feature Set
Content Feature Set

Fig. 2: Determining K value for the Feature Sets

best accuracy.
4) Naı̈ve Bayes: We have used both Gaussian and Multino-

mial Naı̈ve Bayes for Scikit-learn as well as Weka, but better
result has been found from Gaussian Naı̈ve Bayes.

5) Random Forest: In Scikit-learn as well as Weka we
have used max features = sqrt(n features), depth =
0, seed = 1 and max iterations = 100. Other parameters
have been kept default for both Scikit-learn and Weka.

E. Validation

To validate our model, we have chosen k-fold Cross Valida-
tion. k-fold Cross Validation ensures the full dataset is used to
train the model. We have used widely accepted value k = 10.

We also measure the F1 score of our model. F1 score is
harmonic mean of precision and recall. Having a higher Recall
means there are less FALSE NEGATIVES. As much as less
False Negatives or Zero FN means, model prediction is really
good. Whereas having higher Precision means, there are less
FALSE POSITIVES. Similarly, Less or Zero False Positives
means Model prediction is really good. Thus having a higher
F1 score implies good Model Prediction.

F. Feature Selection

We have used ”Select Attributes” functionality of Weka
for selecting features to improve our classifier. We have used
Information Gain as well as Gain Ratio functions to select
the attributes. We eliminate the attributes with 0 value for
both functions. Both functions choose the same attributes for
elimination.

G. Testing Classifier with uk-2014 dataset

Our Test data uk-2014 has 4.7 million instances. Weka runs
out of memory if we try to load the full dataset at once. So we
divide the test data into multiple chunks for testing. Finally,
we take the average of accuracy and F-Measure found from
all of the chunks to get result for the full dataset.

V. RESULT

In this section, we describe several analyses with the derived
results for evaluating the accuracy of our classification model.



TABLE IV: 10-fold Cross Validation Accuracy for Scikit-learn and Weka

Model Obvious Link Transformed Link Content
Scikit-learn Weka Scikit-learn Weka Scikit-learn Weka Scikit-learn Weka

SVM 94.44 100 94.42 100 100 99.95 94.60 99.97
KNN 94.45 100 94.45 99.52 94.45 96.27 94.91 99.82
Logistic
Regression 94.45 99.95 94.1 99.8 93.75 99.67 94.54 99.71

Naı̈ve
Bayes 92.87 99.2 73.11 98.2 83.44 94.17 6.99 36.01

Random
Forest 90.75 100 99.98 100 99.45 96.97 99.4 98.47

TABLE V: F-measure for Scikit-learn and Weka

Model Obvious Link Transformed Link Content
Scikit-learn Weka Scikit-learn Weka Scikit-learn Weka Scikit-learn Weka

SVM 0.9 1 0.92 1 1 0.999 0.92 1
KNN 0.92 1 0.92 0.995 0.92 0.954 0.93 0.997
Logistic
Regression 0.92 0.999 0.93 0.998 0.92 0.997 0.92 0.997

Naı̈ve
Bayes 0.92 0.992 0.83 0.983 0.85 0.95 0.03 0.471

Random
Forest 0.95 1 0.97 1 0.99 0.964 0.98 0.984

A. 10-fold Cross Validation Accuracy

Table IV represents the 10-fold cross validation accuracy for
Python Scikit-learn and Java Weka for each of the models and
feature sets. For Scikit-learn, we can see that SVM has 100%
accuracy for Transformed Link feature Set and 94% accuracy
for the rest feature sets. KNN and Logistic Regression both
have around 94% accuracy for all of the feature sets. For Naı̈ve
Bayes only Obvious feature set shows a better accuracy of
92.87%. All feature sets show accuracy above 99.4% except
Obvious feature set for Random Forest Model.

Again, for Weka, we find that SVM has 99.9-100% accuracy
for all of the feature sets. KNN has above 99.5% accuracy for
all feature sets except Transformed Link feature set. For all
feature sets, Logistic Regression Model has accuracy above
99.67%. Content Feature Set does not fit to Naı̈ve Bayes
Model having a poor accuracy whereas Obvious and Link
feature sets show accuracy greater than 98.2%. Obvious and
Link feature sets show 100% accuracy for Random Forest
Model. Overall, Obvious and Link feature sets show better
accuracy of 99.6% on average for all of the models compared
to the other two feature sets.

B. F-measure

We have calculated the F-measure score of all of the feature
sets for each of the machine learning models shown in Table V.
Most of the values are higher and closer to 1 indicating high
precision and recall of our models. In our classification task,
we intend to build a classifier with high precision and recall.
Our Model decides a website is spam or non-spam.We want
our model to do the following:

• precisely identify non-spam websites from spam websites
(precision)

• identify each website from both spam and nos-spam
classes (recall)

It means that we need to select the model that performs well
on both metric. So, a high F1 score indicates such model.

By comparing Table IV and Table V, we see that the
accuracy and F-measure values do not deviate at all that
indicates the uneven class distribution does not affect our
model. It implies accuracy is a good measure.

C. Finding Best Model for each Feature Set

In this section we have compared accuracy for all machine
learning models and found the best Machine Learning Model
for each feature set. For brevity, we have not included the
values of F-measure in Table VI as both accuracy and F-
measure indicate similar result in our model.

1) Obvious Feature Set: SVM, KNN and Random Forest
Models show 100% accuracy in Weka. Again, Naı̈ve Bayes
and Logistic Regression Models also have accuracy above 99%
in Weka. So, all of the Machine Learning Models are well-
fitted for Obvious Feature Set.

2) Link Feature Set: Random Forest Model shows around
100% accuracy in Weka as well as Scikit-learn. SVM also
shows 100% accuracy in Weka. Again, KNN, Naı̈ve Bayes
and Logistic Regression Models show above 98% accuracy in
Weka. So, all of the Machine Learning Models are well-fitted
for Link Feature Set.

3) Transformed Link Feature Set: We get around 100%
accuracy for SVM shown in both Scikit-learn and Weka.
Above 99% accuracy is found for Random Forest Model in
Scikit-Learn and for Logistic Regression in Weka. KNN and
Naı̈ve Bayes perform moderate. So, SVM is best-fitted for
Transformed Link Feature Set considering both Scikit-learn
and Weka.



TABLE VI: Machine Learning Model and Tool Selection for each Feature Set

Feature Sets SVM KNN Logistic Regression Naı̈ve Bayes Random Forest Modelling Tools

A.(S.,W.) R. A.(S.,W.) R. A.(S.,W.) R. A.(S.,W.) R. A.(S.,W.) R. Weka Scikit-
learn

Obvious 94.44,100 1 94.45,100 1 94.45,99.95 3 92.87,99.2 4 90.75,100 2

SVM,
KNN,
L.R.,
N.B., R.F.

-

Link 94.42,100 2 94.45,99.52 4 94.1,99.8 3 73.11,98.2 5 99.98,100 1

SVM,
KNN,
L.R.,
N.B., R.F.

R.F.

Transformed
Link 100,99.95 1 94.45,96.27 4 93.75,99.67 3 83.44,94.17 5 99.45,96.97 2

SVM,
KNN,
L.R., N.B.

SVM,
R.F.

Content 94.6,99.97 2 94.91,99.82 3 94.54,99.71 4 6.99,36.0 5 99.4,98.47 1
SVM,
KNN,
L.R., R.F.

R.F.

Here, A.=Accuracy(%), R.=Rank, S.=Scikit-learn, W.=Weka

4) Content Feature Set: For Content Feature Set, SVM,
KNN and Logistic Regression Models show around 100%
accuracy in Weka. Random Forest Model has above 98%
accuracy in both Scikit-learn and Weka but Naı̈ve Bayes
Model performs poorly and cannot be considered for Content
Feature Set.

We have summarized the results in Table VI. We have
ranked the machine learning models in ascending order ac-
cording to highest to lowest accuracy for each feature set. For
instance, according to rank, the best machine learning models
for Transformed Link Feature Set are SVM, Random Forest,
Logistic Regression, KNN and Naı̈ve Bayes respectively. We
have also determined the best modelling tool for each of the
feature sets. To illustrate, KNN, Logistic Regression and Naı̈ve
Bayes Models are well-suited to Weka only whereas Random
Forest Model is well-suited to Scikit-learn but SVM works
well for both Weka and Scikit-learn for Transformed Link
Feature Set. We can see that except Random Forest Model for
Transformed Link Feature Set, Weka gives better performance
for all of the models and feature sets. For Scikit-learn only
Random Forest Model performs well for all the feature sets
except Obvious Feature Set.

Regarding the machine learing models, SVM is faster in
training, better in accuracy with stability/robustness and works
well for each of the Feature Sets. Random Forest is good
for balancing error in class population unbalanced data sets
reflected in our case. Logistic regression assumes no error
in the output variable (y). As we consider removing outliers
and possibly misclassified instances from our training data, it
works well and is reflected in our result. KNN is a very simple
and easy algorithm that even works well for our dataset. Naı̈ve
Bayes performs well in case of categorical input variables
compared to numerical variables. As our feature sets consist
mostly of numerical values, it works poorly for all feature sets
specifically, Content Feature Set.

D. Feature Selection for Improvement in Naı̈ve Bayes Model

The accuracy of Naı̈ve Bayes Model with Scikit-learn is
less than 90% for all of the feature sets. So, we remove some

of the attributes in order to improve the accuracy. Based on
the criteria as explained in Section IV-F, we have eliminated
several features from our Feature Sets. A summary of our
feature selection has been shown in Table VII.

TABLE VII: Feature Selection for Performance Gain

Feature Set Total
Features

Eliminated
Features

Existing
Features

Link 41 7 34
Transformed Link 137 52 85

Content 96 14 82
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Fig. 3: Changes in Naı̈ve Bayes Accuracy with Feature Selection

Eliminated Link features include:
• Neighbors at distance 3 of home page
• Fraction of out-links that are also in-links of home page
• Fraction of out-links that are also in-links of page with

maximum pagerank
• Assortativity coefficient of the home page (ratio of degree

and average degree of neighbors)
• trustrank of home page
• trustrank of page with maximum pagerank
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Fig. 4: Comparison between Graph based (Link and Transformed Link) Feature Sets and Text based (Content) Feature Set

TABLE VIII: 10-fold Cross Validation Accuracy and F-measure with Link Feature Set and Transformed Link Feature Set for
uk-2014 Test Dataset using Scikit-learn and Weka

Link Transformed Link
Model Scikit-learn Weka Scikit-learn Weka

Accuracy F Measure Accuracy F Measure Accuracy F Measure Accuracy F Measure
SVM 90.812 0.854 94.5 0.901 91.2 0.911 90.57 0.905
KNN 85.65 0.699 87.5 0.839 87.78 0.877 88.35 0.854
Logistic Regression 89.2 0.787 86.67 0.84 85.2 0.839 90.2 0.878
Naive Bayes 60.72 0.75 79.4 0.755 68.91 0.73 72.93 0.69
Random Forest 91.25 0.889 92.33 0.865 90.06 0.897 89.89 0.887

Some of the eliminated features from Transformed Link Set
are: Ratio of pagerank of the page with maximum pagerank,
pagerank of home page; Ratio of neighbors at distance 4 of
home page, neighbors at distance 4 of page with maximum
pagerank; Ratio of trustrank of page with maximum pagerank,
trustrank of home page and many more. A close observation
points out that the features related to trustrank have been
eliminated from both Linked and Transformed Link feature
sets.

After the selection, we get less than 10% improvement
shown in Fig. 3. Again, for Link Feature Set the accuracy
decreased around 33%. So, selected features did not contribute
to an improved performance. For our dataset, feature selection
has not been proved to be an acceptable technique.

E. Graph based vs. Text based Feature Sets

Extracting the features from contents of the link/ page
is somewhat exaggerating process because of huge amount
of texts. Whereas calculating several graph-based metrics
such as clustering-coefficient, triangle count, ratio of indegree
and outdegree etc., from the webgraph is more convenient
considering the emerging graph mining techniques. From our

analysis we have found that graph metrics based Link Feature
Set always provides better or similar accuracy than text based
Content Feature Set as shown in Fig. 4.

F. uk-2014 Dataset Test Result

Based on our training model classifier, we have tested our
model with uk-2014 dataset. We focus only on the Graph
based (Link and Transformed Link) Feature Sets. Table VIII
shows the 10-Fold Cross Validation Accuracy and F-score for
these two feature sets using both Scikit-learn and Weka. For
Link Feature Set, we get 90-94% accuracy for both Scikit-
learn and Weka using SVM and Random Forest models.
KNN and Logistic Regression performs moderately with 85-
89% accuracy. In case of Transformed Link Feature Set, the
accuracy is around 90% for SVM, Logistic Regression and
Random Forest model in Weka. SVM and Random Forest also
has 90-91% accuracy with Scikit-learn. Overall, both SVM and
Random Forest Model perform well for our test dataset. The
higher values of F1-score also indicate good performance of
our classifier.



G. Weka versus Scikit-learn
We compare the implementation differences of Weka and

Scikit-learn for the Machine Learning Models. While working
with both of the modelling tools, we have found some dissim-
ilarities. In both of the tools, some parameters do not match at
all. For instance, the parameter setting for Logistic Regression
Model for Scikit-learn and Weka are different. Parameters
related to Scikit-learn are penalty, dual, tol, C, fit intercept, in-
tercept scaling, class weight, random state, solver, max iter,
multi class, verbose, warm start, n jobs, l1 ratio. Whereas
for Weka the parameters are: batchsize, max its, ridge, useC-
onjugateGradient. Only common parameter between both is
maximum iteration.

We could not compare both in the same scale, still we have
kept all of the parameters same those match and compared
the result. From our analysis in Section V-C, we see that
Weka works better for all of the models for each of the
Feature sets. Exception is for only Random Forest Model
for Transformed Link Feature Set perceived from Table VI.
Overall, we conclude that the default parameter settings for
Weka provides better accuracy and is useful for end-users.
On the other hand, we need to calibrate the parameters with
Trials and Errors to obtain a better accuracy in Scikit-learn.
The professional developers are much comfortable with Scikit-
learn. Weka saves our valuable time as we need not give much
time to adjust the parameters.

H. Comparison with existing work
We face difficulty to compare our work with the existing

works as most of the works did not provide the model
parameters for reproducibility. Again, the intermingling of
feature sets do not match. We then compare the performance
of our machine learning classifier with an existing work [24],
although some information was missing. The authors devel-
oped SVM with two kernels. We have achieved a performance
gain in simple SVM with rbf kernel as well as their TWSVM
Model for Content Feature Set represented in Fig. 5. We have
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Fig. 5: Performance Gain in SVM Model for Content Feature Set

used same dataset as well as same 10-fold Cross Validation

accuracy to compare our result with theirs. The authors have
not mentioned the parameter settings of their SVM Model, so
we have used our own parameter settings providing the best
output and achieved the improved performance.

VI. CONCLUSION

In this paper, we have developed a machine learning clas-
sifier to detect web spam from webgraph. For our labelled
dataset, WEBSPAM-UK2007, SVM provides 100% accuracy
for all of the Feature Sets. Along with Random Forest and
KNN are best-suited with 100% accuracy for Obvious Feature
Set. For Link Feature Set, Random Forest also provides 100%
accuracy. Naı̈ve Bayes shows 94.17%-99.63% accuracy for all
of the feature sets except Content Feature Set. We generate
features for test data which can be used for any webgraph for
feature generation. Our model shows 90-94% accuracy for our
test data with the graph-based features generated from uk-2014
dataset, the most recent available webgraph in uk domain.
Using our predictive model classifier, we can detect web spam
with graph-based features for any webgraph provided as input.
We have found that Weka gives better accuracy compared to
Scikit-learn for these feature sets in default parameter settings
in most cases. In future, we will generate feature sets based
on the values of graph metrics other than in-degree, out-
degree and PageRank and check how other metrics perform
to detect spam and non-spam websites. We plan to compute
the graph metrics with Apache-Hadoop-Spark using Graphx
because some webgraphs are very large to handle. For scalable
computing, we will use the generated feature sets for our
classifier built using Apache MLib to predict webspam with
high accuracy. We plan to use our classifier in an existing web
archive to check if webspam has been archived there and how
much space we can save by removing web spam from the
archive.
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tion: a few features worth more,” in Proceedings of the 2011 Joint
WICOW/AIRWeb Workshop on Web Quality. ACM, 2011, pp. 27–34.

[19] B. Zhou and J. Pei, “Link spam target detection using page farms,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 3, no. 3,
p. 13, 2009.

[20] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, “Detecting spam
web pages through content analysis,” in Proceedings of the 15th inter-
national conference on World Wide Web. ACM, 2006, pp. 83–92.

[21] G. Mishne, D. Carmel, R. Lempel et al., “Blocking blog spam with
language model disagreement.” in AIRWeb, vol. 5, 2005, pp. 1–6.

[22] L. Becchetti, C. Castillo, D. Donato, R. Baeza-Yates, and S. Leonardi,
“Link analysis for web spam detection,” ACM Transactions on the Web
(TWEB), vol. 2, no. 1, p. 2, 2008.

[23] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri, “Know
your neighbors: Web spam detection using the web topology,” in
Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2007,
pp. 423–430.

[24] S. H. R. Mohammadi and M. A. Z. Chahooki, “Web spam detection
using multiple kernels in twin support vector machine,” arXiv preprint
arXiv:1605.02917, 2016.

[25] M. Luckner, “Practical web spam lifelong machine learning system
with automatic adjustment to current lifecycle phase,” Security and
Communication Networks, vol. 2019, 2019.

[26] M. Iqbal, M. M. Abid, U. Waheed, and S. H. Alam Kazmi, “Classifica-
tion of malicious web pages through a j48 decision tree, a naı̈ve bayes,
a rbf network and a random forest classifier for webspam detection,”
2017.

[27] A. Makkar, M. S. Obaidat, and N. Kumar, “Fs2rnn: Feature selection
scheme for web spam detection using recurrent neural networks,” in
2018 IEEE Global Communications Conference (GLOBECOM). IEEE,
2018, pp. 1–6.

[28] K. L. Goh and A. K. Singh, “Comprehensive literature review on
machine learning structures for web spam classification,” Procedia
Computer Science, vol. 70, pp. 434–441, 2015.

[29] M. Awad and R. Khanna, “Support vector machines for classification,”
in Efficient Learning Machines. Springer, 2015, pp. 39–66.

[30] J. Brownlee. How to use classification machine learning
algorithms in weka. [online] available at:. [Online]. Avail-

able: https://machinelearningmastery.com/use-classification-machine-
learning-algorithms-weka

[31] A. Ng, “Cs229 lecture notes,” CS229 Lecture notes, vol. 1, no. 1, pp.
1–3, 2000.

[32] D. Team. Kernel functions-introduction to svm kernel &
examples. [online] available at:. [Online]. Available: https://data-
flair.training/blogs/svm-kernel-functions

[33] D. Community. Support vector machines in scikit-
learn. [online] available at:. [Online]. Available:
https://www.datacamp.com/community/tutorials/svm-classification-
scikit-learn-python#kernels

[34] S. Ray. Understanding support vector machine algorithm from
examples (along with code). [online] available at:. [Online].
Available: https://www.analyticsvidhya.com/blog/2017/09/understaing-
support-vector-machine-example-code

[35] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “Knn model-based
approach in classification,” in OTM Confederated International Confer-
ences” On the Move to Meaningful Internet Systems”. Springer, 2003,
pp. 986–996.

[36] K-nearest neighbors algorithm. [online] available at:. [Online].
Available: https://en.wikipedia.org/wiki/K-nearest neighbors algorithm

[37] I. Kurt, M. Ture, and A. T. Kurum, “Comparing performances of logistic
regression, classification and regression tree, and neural networks for
predicting coronary artery disease,” Expert systems with applications,
vol. 34, no. 1, pp. 366–374, 2008.

[38] R. Jain. Introduction to naive bayes classification algorithm
in python and r. [online] available at:. [Online]. Avail-
able: https://www.hackerearth.com/blog/machine-learning/introduction-
naive-bayes-algorithm-codes-python-r

[39] I. Rish et al., “An empirical study of the naive bayes classifier,” in IJCAI
2001 workshop on empirical methods in artificial intelligence, vol. 3,
no. 22. IBM New York, 2001, pp. 41–46.

[40] H. Lan. Decision trees and random forests for classification
and regression pt.2. [online] available at:. [Online]. Avail-
able: https://towardsdatascience.com/decision-trees-and-random-forests-
for-classification-and-regression-pt-2-2b1fcd03e342

[41] A. Liaw, M. Wiener et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[42] A. Bronshtein. Train/test split and cross validation in
python towards data science. [online] available at:.
[Online]. Available: https://towardsdatascience.com/train-test-split-and-
cross-validation-in-python-80b61beca4b6

[43] J. Brownlee. A gentle introduction to k-fold cross-validation. [online]
available at:. [Online]. Available: https://machinelearningmastery.com/k-
fold-cross-validation

[44] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning: with Applications in R (Springer Texts in Statistics),
1st ed. Springer, 2013, vol. 112.

[45] U. M. Braga-Neto and E. R. Dougherty, “Is cross-validation valid for
small-sample microarray classification?” Bioinformatics, vol. 20, no. 3,
pp. 374–380, 2004.

[46] C. Castillo. Webspam-uk2007 (current dataset). [online] available at:.
[Online]. Available: http://chato.cl/webspam/datasets/uk2007

[47] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). Manhattan, USA: ACM Press, 2004, pp.
595–601.

[48] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th international conference on World
Wide Web, S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra,
E. Bertino, and R. Kumar, Eds. ACM Press, 2011, pp. 587–596.

[49] P. Boldi, A. Marino, M. Santini, and S. Vigna, “BUbiNG: Massive
crawling for the masses,” in Proceedings of the Companion Publication
of the 23rd International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2014, pp. 227–228.

[50] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,
V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler et al., “Api design
for machine learning software: experiences from the scikit-learn project,”
arXiv preprint arXiv:1309.0238, 2013.

[51] F. Eibe, M. Hall, and I. Witten, “The weka workbench. online appendix
for” data mining: Practical machine learning tools and techniques,”
Morgan Kaufmann, 2016.


