
M-Sched: A University Course Timetabler

Shahadat Hossain1 and Minhaz Fahim Zibran2

1 University of Lethbridge, shahadat.hossain@uleth.ca
2 University of Calgary, mfzibran@ucalgary.ca

1 Introduction

In this paper we present a software implementation for solving the university
course timetabling problem. Our timetabling implementation schedules instruc-
tors and courses taking into account the instructors’ preferences on courses,
days, and times. Typically, instructors have different levels of expertise in dif-
ferent areas. Furthermore, the instructors might have personal preferences on
courses, and the times of days the courses are offered. On the other hand, for
various reasons the administration may have timetabling goals conflicting with
those preferences. Therefore, the “instructor-course assignment” is an important
subproblem in any course timetabling exercise. Fully automated timetablers are
often not useful when the constraints cannot lead to a feasible solution [8]. Hence,
a high level of flexibility and user involvement is necessary to resolve such issues
during the timetabling process. Courses offered by different academic depart-
ments often have interdependencies. So, flexibility to examine subdivision of
events is also important [5]. As timetabling requirements widely vary over aca-
demic institutions, it is extremely hard, if not impossible, to develop a generale
purpose black-box timetabler [5, 6]. Therefore, having the flexibility of dynamic
customization of timetabling constraints is useful.

Our timetabling implementation focuses on course timetabling in academic
departments at the University of Lethbridge. Instructors indicate which courses
they would like to teach, as well as the day and time of day (morning or af-
ternoon) they prefer to teach. Professors teach only lectures, academic assis-
tants (lab instructors) conduct labs and tutorials, and teaching assistants (grad-
uate students) conduct only labs. We decompose the entire problem into sev-
eral smaller subproblems and solve them separately in a sequence of phases. In
phase-1a, we assign lectures to professors. Phase-1b assigns labs and tutorials
to academic assistants and teaching assistants. In phase-2, lectures are allotted
to days. Then we allocate time-slots to lectures in phase-3. Finally, phase-4 as-
signs labs and tutorials to week-days and available time-slots. At each phase,
the objective is to maximize a set of preferences subject to the given constraints.
All architectural complexities are hidden behind a carefully designed graphical
user interface. Our implementation allows the user to customize constraints as
well as to generate new solutions extending the partial solutions from perviously
generated timetables.



2 Software Architecture

Fig. 1. software architecture of the timetabling implementation.

Our software implementation has a modular architecture as shown in Fig-
ure 1. Necessary input data are provided via MS Excel spreadsheets. For each of
the subproblems we have separate constraint programming (CP) or integer pro-
gramming (IP) models written in OPL [2]. ILOG’s CPLEX solver is used to solve
these CP/IP models. The C++ module invokes the solver to solve the appro-
priate CP/IP model in response to user’s activity in the graphical user interface
(GUI). The GUI, as shown in Figure 2, is implemented using Java following the
ergonomics and usability guidelines of Human Computer Interaction (HCI) [7].
This makes the GUI user-friendly for the purpose of constraint customization
(see Figure 3), as well as generation and modification of schedules.

The modular implementation using object oriented techniques makes our
timetabling tool scalable and easily modifiable. For example, the CPLEX solver
may be replaced by any solver without much affecting the other modules. More-
over, the software architecture conforms the MVC (model-view-controller) pat-
tern [1] of software engineering paradigm. The GUI constitute the ‘view’, the
C++ module along with the solver works as the ‘controller’, whereas the ‘model’
portion includes the spreadsheets and CP/IP models.

3 Conclusion

The multi-phase approach [3, 9] allows us to work on a smaller problem at a time.
Besides, it enables us to exploit the problem structure of each phase and apply
different solution strategies (CP or ILP) as appropriate. One of the objectives
of this work is to provide the user enough flexibility so that customized sched-
ules can be produced in a user-friendly way. In the current implementation the
software permits addition or removal of constraints on the fly, loading and mod-
ifying a previously saved solution, and computing a new solution from a partial



Fig. 2. A snapshot of user interface of the timetabling implementation.

Fig. 3. GUI for constraint customization.



solution. In such cases, the new solution is attained quickly as it is not necessary
to solve the problem from scratch [4]. Since the phases are solved separately,
partial solutions may be generated, examined and amended. Furthermore, the
graphical user interface on top of the actual computational modules makes our
timetable implementation flexible and easy to use.

References

1. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns–Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series. ISBN 0201633612. 21st Printing, November 2000.

2. Pascal Van Hentenryck and et al. Constraint Programming in OPL. International
Conference on Principles and Practice of Declarative Programming (PPDP-99),
Paris, France.

3. Shahadat Hossain and Minhaz Zibran. A Multi-phase Approach to the University
Course Timetabling Problem. In the proceedings of the 6th Cologne-Twente Work-
shop on Graphs and Combinatorial Optimization, The Netherlands, 2007. J.L.
Hurink, W. Kern, G.F. Post, and G.J. Still (Eds). pp. 73 – 76, ISSN: 1574 - 0846.

4. T. Müller, R. Bartàk, H. Rudovà. Minimal Perturbation Problem in Course
Timetabling. Practice and Theory of Automated Timetabling, Selected Revised
Papers, pp. 126 – 146. Springer-Verlag LNCS 3616, 2005.

5. Barry McCollum. University Timetabling: Bridging the Gap between Research and
Practice. PATAT 2006, pp. 15 – 35. ISBN 80-210-3726.

6. Keith Murray and Tomáŝ Müller. Automated System for University Timetabling.
PATAT 2006, pp. 536-541. ISBN 80-210-3726-1.

7. Jacob Nielsen. Usability Engineering, pp. 115 – 163, Academic Press, 1993.
8. Sylvain Piechowiak, Jingxua Ma, and René Mandiau. An Open Timetabling Tool.

PATAT 2004. LNCS 3616, pp. 34 – 50, 2005.
9. Minhaz Fahim Zibran. A Multi-phase Approach to University Course Timetabling.

M.Sc. Thesis, Department of Mathematics and Computer Science, University of
Lethbridge, Canada, 2007.


