
A Constraint Programming Approach to
Conflict-aware Optimal Scheduling of Prioritized

Code Clone Refactoring
Minhaz F. Zibran Chanchal K. Roy

Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5C9
Email: {minhaz.zibran, chanchal.roy}@usask.ca

Abstract—Duplicated code, also known as code clones, are one
of the malicious ‘code smells’ that often need to be removed
through refactoring for enhancing maintainability. Among all
the potential refactoring opportunities, the choice and order of a
set of refactoring activities may have distinguishable effect on the
design/code quality. Moreover, there may be dependencies and
conflicts among those refactorings. The organization may also
impose priorities on certain refactoring activities. Addressing all
these conflicts, priorities, and dependencies, manual formulation
of an optimal refactoring schedule is very expensive, if not
impossible. Therefore, an automated refactoring scheduler is
necessary, which will maximize benefit and minimize refactoring
effort. In this paper, we present a refactoring effort model, and
propose a constraint programming approach for conflict-aware
optimal scheduling of code clone refactoring.

Index Terms—code clone, refactoring, maintenance, optimiza-
tion, scheduling, reengineering, effort model, software metric

I. INTRODUCTION

Duplicated code, or code clone is a well-known code smell.
Programmers’ copy-paste-modification practice is regarded as
one of the main reasons for such intentional clones. However,
unintentional clones also appear due to a number of reasons.
For example, the use of design patterns, frameworks, and sim-
ilar APIs result in unintentional code clones. Previous studies
reported that software systems might have 9%-17% [30] du-
plicated code, up to 50% [23]. Copying a fragment containing
any unknown bugs may result in fault propagation. From the
maintenance perspective, the existence of code clones may
increase maintenance effort. For example, a change in a clone
fragment may require careful and consistent changes to the
all copies of the fragment. Any inconsistency may introduce
new bugs. Nevertheless, in many cases, code clones are
unavoidable or desirable. Therefore, to prevent code inflation
and reduce maintenance cost the amount of code clones should
be minimized by applying active refactoring.

There are many refactoring patterns [8], [9], all of which
are not directly applicable to code clone refactoring. The
applicability of certain refactoring activities largely depends
on the context. So, for code clones, refactoring activities and
the relevant contexts need to be identified in the first place.
The consequence of clone refactoring should also be taken into
account. The effort required for applying certain refactoring
on the underlying code clones should also be minimized to

keep the maintenance cost within reach. The application of
a subset of refactoring from a set of applicable refactoring
activities may result in distinguishable impact on the overall
code quality. Moreover, there may be sequential dependencies
and conflicts among the refactoring activities. These lead to
the necessity that, from all refactoring candidates a subset of
non-conflicting refactoring activities be selected and ordered
(for application) such that the quality of the code base is
maximized while the required effort is minimized [31].

Software refactoring is often performed with the aid of
graph transformation tools [20], where the available refac-
torings are applied in random, without having been sched-
uled [17]. Usually, the application order of the semi-automated
refactorings is determined implicitly by human practitioners.
But this is inefficient and error-prone. While experienced
engineers may do it well, inexperienced practitioners may lead
to poor/infeasible schedule. The challenge is likely to be more
severe for refactoring legacy systems, or when a developer
new to the code base has to devise the refactoring schedule.
Therefore, automated (or semi-automated) scheduling for per-
forming selection and ordering of refactorings from a set of
all refactoring candidates is a justified need.

In this regard, this paper makes two contributions. First,
for estimating the refactoring effort, we introduce an effort
model for refactoring code clones in object-oriented (OO) code
base. Second, taking into account the effort model and a wide
variety of possible hard and soft constraints, we formulate
the scheduling of code clone refactoring activities as a con-
straint satisfaction optimization problem (CSOP), and solve it
applying constraint programming (CP) technique that aims to
maximize benefit while minimizing the refactoring effort. To
the best of our knowledge, ours is the first refactoring effort
model for OO systems, and we are the first to apply the CP
technique in software refactoring scheduling. To evaluate the
effectiveness of our scheduler and the code clone refactoring
effort model, we also conduct a case study on four software
systems written in Java.

The remaining of the paper is organized as follows. Sec-
tion II identifies the refactoring patterns that are suitable for
code clone refactoring. In Section III, we describe our clone
refactoring effort model. Section IV discusses how the effect
of refactoring can be estimated. In Section V, we describe the

possible constraints on refactorings, and Section VI presents
our CSOP formulation of the refactoring scheduling problem.
In Section VII, we illustrate our case study to evaluate our
refactoring scheduler and the effort model. Section VIII con-
tains discussion on the related work, and finally Section IX
concludes the paper with our directions to future research.

II. CLONE REFACTORING OPERATIONS

Among the software refactoring patterns [8], we find the
following patterns suitable for clone refactoring, and we refer
to them as refactoring operators. Detail about these refactoring
patterns can be found elsewhere [8], [9].
• Extract method (EM) involves extracting a block of

code as a new method, and replacing that block by a
call to the newly introduced method. Extract method may
cause splitting of a method into pieces. For code clone
refactoring, similar blocks of code can be replaced by
calls to an extracted generalized method (Figure 1).

• Pull-up method (PM) removes similar methods found
in several classes by introducing generalized method in
their common superclass.

• Extract superclass (ES) introduces a new common su-
perclass for two or more classes having similar methods,
and then applies Pull-up method. This may be necessary
when those classes do not have a common superclass.

• Extract utility-class (EU) is applicable in situations,
where similar functions are found in different classes, but
those classes do not conceptually fit to undergo a common
superclass. A new class is introduced that accommodates
a method generalizing the similar methods that need to
be removed from those classes.

Beside these prominent refactoring patterns, other low level
refactoring operations such as, identifier renaming, method
parameter re-ordering, changes in type declarations, splitting
of loops, substitution of conditionals, loops, algorithms, and
relocation of method or field may be necessary to produce
generalized blocks of code from near-miss (similar, but not
exact duplicate) clones.

For code clone refactoring, these refactoring operators will
operate on groups of clone fragments having two or more
members. We refer to such clone-groups as the refactoring
operands or candidates. Thus, a refactoring activity (or simply,
refactoring) r can be formalized as,

r = 〈op, g〉,where op ∈ {EM,PM,ES,EU, ...}

and g is the clone-group, which the refactoring operator op
operates on. Note that, more than one refactoring operator
may be needed to refactor the same clone group, and thus a
complete refactoring of a clone group may require more than
one refactoring activities.

III. ESTIMATION OF REFACTORING EFFORT

The effort required for code clone refactoring is likely to
depend on the type of refactoring operators and operands. For
instance, applying the extract method refactoring pattern on
exact duplicate code clones will require less effort than that

for applying on near-miss code clones. Moreover, refactoring
clone code snippets that are scattered across different locations
of the code base and/or inheritance hierarchy may require
relatively more effort than that for refactoring clones residing
cohesively at certain location of the code base. To address
these issues, we propose a code clone refactoring effort model
for procedural and OO software systems.

Suppose, a group of clones g = {c1, c2, c3, . . . , cn} is
extracted as a set of refactoring candidates, where ci (1 ≤
i ≤ n) is a clone fragment inside method mi, which is a
member of class Ci hosted in file Fi contained in directory
Di. Mathematically,

cy
i my

i Cy
i F y

i Di, for object-oriented code.
cy

i my
i F y

i Di, for procedural code.

Here, the symbol y indicates containment relationship. xyy
means, x is contained in y, in other words, y contains x.
The relationship preserves transitive property, i.e., xyyyz ⇒
xyz. Thus, the set C(g) of all classes hosting the clone
fragments in g can be defined as,

C(g) ={Ci | ∀ ci ∈ g, cy
i Ci}.

A. Context Understanding Effort

The applicability of refactoring on certain code clones is
largely dependent on the context. Therefore, before refactor-
ing, the developer needs to understand the context pertaining
to the refactoring candidate at hand. For understanding the
context, the developer needs to examine two things: the caller-
callee delegation of methods and the inheritance hierarchy.

Effort for Understanding Method Delegation. To un-
derstand the delegation of methods involving the concerned
code fragment ci ∈ g, the developer needs to understand the
chain of methods that can be reached from ci via caller-callee
relationship. Let, Mr(ci) be the set of all such methods. The
developer will also need to comprehend the set Mf (ci) of all
the methods from which ci can be reached via caller-callee
relationship.

Then, the set of methods required to investigate for under-
standing the delegation effort concerning ci, determined as,

delegation(ci) = Mf (ci) ∪Mr(ci) ∪ {mi}.

Hence, for understanding delegation concerning all the clone
fragments in g, the set of methods required to examine,
becomes

Delegation(g) =
⋃
ci∈C

delegation(ci).

Thus, for the group g of refactoring candidates, the total effort
for understanding method delegation understanding can be
estimated as,

Ed(g) =
∑

m∈Delegation(g)

LOC(m)

where, LOC(m) computes the total line of code in method
m including the comments, but excluding all blank lines.

Fig. 1. Example of clone refactoring in VisCad: the method on the top-right corner is extracted by generalizing the clone pairs (shaded blocks on the left)

Effort for Understanding Inheritance Hierarchy. Sup-
pose, Cp(g) be the set of all lowest/closest common super-
classes of all pairs of classes in C(g) 1. The developer also
needs to understand those classes in the inheritance hierarchy
that have overridden or referenced to method mi containing
any code clone ci ∈ g. Let, Cs(g) be the set of all such
classes. Then Ch(g) = {Cp(g) ∪Cs(g) ∪C(g)} becomes the
set of all classes required to examine for understanding the
inheritance hierarchy concerning the code clones in g, and the
effort Eh(g) required for this can be estimated as,

Eh(g) =
∑

C∈Ch(g)

LOC(C)

B. Effort for Code Modifications

To perform refactoring on the refactoring candidates, the
developer usually needs to modify portions of source code.

Token Modification Effort. Developer’s source code
modification activities typically include modifications in
the program tokens (e.g., identifier renaming). Let, T =
{t1, t2, t3, . . . , tk} be the set of tokens such that a token ti ∈ T

1For any two Java classes Ci and Cj containing code clones ci and cj

respectively, there may be at most one lowest common superclass, as Java does
not support multiple inheritance. Any Java class is a subclass of the Object
class. If this Object class is found to be the lowest common superclass
of any pair of classes, this should be ignored, and those classes should be
considered to have no common superclass.

is required to be modified to t′i, and the edit distance between
ti and t′i is denoted as δ(ti, t′i). Then the total effort Et(g) for
token modifications can be estimated as,

Et(g) =
k∑
i=1

δ(ti, t′i)

Code Relocation Effort. When the developers need to
move a piece of code from one place to another, they typically
select a block of adjacent statements and relocate them all at a
time. Hence, the code relocation effort Er(g) can be estimated
as,

Er(g) = |β|

where β is the set of all non-adjacent blocks of code that need
to be relocated to perform the refactoring.

C. Navigation Effort

Effort for source code comprehension, modification, reloca-
tion is also dependent on the number of files and directories
involved, and their distribution in the file-system hierarchy. To
capture this, our effort model includes the notion of navigation
effort, En(g), calculated as follows.

En(g) =|Fd(g) ∪ Fh(g)|+ |Dd(g) ∪Dh(g)|
+DCH(g) +DFH(g)

where,

Fd(g) ={Fi| my
i Fi,mi ∈ Delegation(g)}

Fh(g) ={Fi| Cy
i Fi, Ci ∈ Ch(g)}

Dd(g) ={Di| Fy
i Di, Fi ∈ Fd(g)}

Dh(g) ={Di| Fy
i Di, Fi ∈ Fh(g)}

DCH(g) = max
Ci,Cj∈Ch(g)

{∂(Ci, Cj)}

DFH(g) = max
Fi,Fj∈Fd(g)∪Fh(g)

{ð(Fi, Fj)}

Here, DCH(g) refers to the dispersion of class hierarchy
having ∂(Ci, Cj) denoting the distance between class Ci
and class Cj in the inheritance hierarchy. More detail about
DCH(g) can be found elsewhere [11]. DFH(g) is a similar
metric that captures the dispersion of files, and ð(Fi, Fj)
denotes the distance between files Fi and Fj in the file-system
hierarchy.

Thus, the total effort E(g) needed to refactor clone-group
g is estimated as,

E(g) = wd × Ed(g) + wh × Eh(g)
+ wt × Et(g) + wr × Er(g) + wn × En(g)

where wd, wh, wt, wr, and wn are respectively the wights on
the efforts for understanding method delegation, understanding
inheritance hierarchy, token modification, code relocation, and
navigation. By default, they are set to one, but the software
engineer may assign different weights to penalize certain types
of efforts.

IV. PREDICTION OF REFACTORING EFFECTS

The expected benefit from code clone refactoring is the
structural improvement in the code base, which should also
enhance the software design quality. Obvious expected benefits
include reduced source line of code (SLOC), less redundant
code, and so on. For procedural code, procedural metrics (e.g.,
SLOC, Cyclomatic Complexity) as well as structural metrics
(e.g., fan-in, fan-out, and information flow) can be used to
estimate software quality after refactoring. For object-oriented
systems, these metrics can be supplemented by object-oriented
design metrics suites, such as QMOOD [3] and Chidamber-
Kemerer [6] metric suite. Quantitative or qualitative estimation
of the effect of refactoring on the quality metrics can be
possible before the actual application of the refactoring [5],
[18], [24], [27], [28]. For example, Higo et. al. [10] developed
a tool to estimate the effect of refactoring on the Chidamber-
Kemerer quality metric without having the refactoring actually
applied to the code base.

Having chosen a suitable set of quality attributes, let, Q =
{q1, q2, q3, . . . , qη} be the set of quality attribute values before
refactoring, and Qr = {q′1, q′2, q′3, . . . , q′η} be the estimated
values of those quality attributes after applying refactoring r.
The improvement in quality can be assessed by comparing the
quality before and after refactoring. Hence, the total gain in

TABLE I
QMOOD FORMULA FOR QUALITY ATTRIBUTES [3]

Attribute Formula
Reusability = −0.25× DCC + 0.25× CAM + 0.5× CIS

+0.5× DSC
Flexibility = 0.25× DAM − 0.25× DCC + 0.5× MOA

+0.5× NOP
Understandability = −0.33× ANA + 0.33× DAM − 0.33× DCC

+0.33× CAM − 0.33× NOP − 0.33× NOM
−0.33× DSC

Functionality = 0.12× CAM + 0.22× NOP + 0.22× CIS
+0.22× DSC + 0.22× NOH

Extendability = 0.5× ANA − 0.5× DCC + 0.5× MFA
+0.5× NOP

Effectiveness = 0.2× ANA + 0.2× DAM + 0.2× MOA
+0.2× MFA + 0.2× NOP

TABLE II
QMOOD METRICS FOR DESIGN PROPERTIES [3]

Design Property Metric Description
Design size DSC Design size in classes
Complexity NOM Number of methods
Coupling DCC Direct class coupling
Polymorphism NOP Number of polymorphic methods
Hierarchies NOH Number of hierarchies
Cohesion CAM Cohesion among methods in class
Abstraction ANA Average number of ancestors
Encapsulation DAM Data access metric
Composition MOA Measure of aggregation
Inheritance MFA Measure of functional abstraction
Messaging CIS Class interface size

quality Qr from refactoring r can be estimated as,

Qr =
η∑
j=1

ϑj × (q′j − qj)

where ϑj is the weight on the jth quality attribute. By default,
ϑj = 1, but the software practitioner can assign different
values to impose more or less emphasis on certain quality
attributes.

In our work, we use the QMOOD metric suite for esti-
mating the effect of refactoring on object-oriented code base.
QMOOD is a prominent quality model for object-oriented
systems, which is widely used by many other researchers [5],
[17], [18]. We choose QMOOD, mainly because, this quality
model has the advantage that it defines six design high level
quality attributes (Table I) from the 11 lower level structural
property metrics (Table II).

V. REFACTORING CONSTRAINTS

Among the applicable refactoring activities, there may be
conflicts and dependencies [19]. Application of one refactor-
ing may cause elements of other refactorings disappear, and
thus invalidate their applicability [5], [18], [19]. Beside such
mutual exclusion on conflicting refactorings, the application of
one refactoring may reveal new refactoring opportunities, as
suggested by Lee et. al. [18]. We understand that this is largely
due to the composite structure of certain refactoring patterns,
where one larger refactoring is composed of several smaller
core refactorings [1]. For example, when extract superclass

refactoring is applied, pull-up method is also applied as a part
of it. In other words, pull-up method, at times, may require
extraction of new superclass.

There may also be sequential dependencies between refac-
toring activities [18], [19]. Constraints of mutual inclusion
may also arise when the application of one refactoring will ne-
cessitate operation of certain other refactorings [29]. Moreover,
the organization’s management may also impose priorities on
certain refactoring activities [5], for example, lower priorities
on refactoring clones in the critical parts of the system. We
identify such priorities as soft constraints beside the following
three types of hard constraints.

Definition 1 (Sequential dependency): Two refactorings ri
and rj is said to have sequential dependency, if ri cannot be
applied after rj . This is denoted as, rj 9 ri or ri 9 rj .

Definition 2 (Mutual exclusion): Given two refactorings ri
and rj is said to be mutually exclusive, if both ri 9 rj and
ri 8 rj holds. The mutual exclusion between ri and rj is
denoted as, ri = rj or rj = ri.

Definition 3 (Mutual inclusion): Two refactorings ri and rj
are said to be mutually inclusive, if ri is applied, rj must also
be applied before or after ri, and vice versa. This is denoted
as ri ↔ rj or rj ↔ ri.

The complete independence of ri and rj is expressed as
ri⊥rj or rj⊥ri. For further detail about the refactoring con-
straints with concrete examples, interested readers are referred
to elsewhere [5], [18], [19], [29].

VI. FORMULATION OF REFACTORING SCHEDULE

Addressing all the hard and soft constraints, it becomes very
difficult to compute an optimal refactoring schedule aiming
to maximize code quality while minimizing efforts. Such a
problem is known to be NP-hard [5], [17], [18]. Finding
the optimum solution for such problems practically becomes
too expensive (time consuming), and so, a feasible optimal
solution is desired. However, the problem is by nature a CSOP.
Therefore, we model the problem as a CSOP and solve it
by applying constraint programming technique, which no one
tried before.

Having identified the set R of all potential refactoring
activities, we define two decision variables Xr and Yr, such
that,

Xr =
{

0 if r ∈ R is not chosen
1 if r ∈ R is chosen

Yr =
{

0 if r ∈ R is not chosen
k if r ∈ R is chosen as the kth activity

where 1 ≤ k ≤ |R|.

We also define a |R| × |R| constraint matrix Z to capture
the sequential dependencies between refactorings ri and rj ,

such that,

Zij =

0 if ri⊥rj
1 if ri = rj
+2 if rj 9 ri and ri ↔ rj
−2 if ri 9 rj and ri ↔ rj
+3 if ri 9 rj , but neither ri ↔ rj nor ri = rj
−3 if ri 9 rj , but neither ri ↔ rj nor ri = rj

Also note that, |Zij | = |Zji| for all 〈i, j〉.
Let, ρr be the priority on the refactoring r that operates

on clone-group gr. The CSOP formulation of the refactoring
scheduling problem can be as follows.

maximize
∑
r∈R
Xrρr(Qr − E(gr)) (1)

subject to,
Xr + Yr 6= 1, ∀ r ∈ R (2)

Xri + Xrj = 2⇒ Yri 6= Yrj , ∀ ri, rj ∈ R (3)
Zij −Zji > 0⇒ Yri < Yrj , ∀ ri, rj ∈ R (4)
Zij −Zji < 0⇒ Yri > Yrj , ∀ ri, rj ∈ R (5)
|Zij | = 1⇒ Xri + Xrj ≤ 1, ∀ ri, rj ∈ R (6)

|Zij | = 2⇒ (Xri + Xrj) modulo 2 = 0, ∀ ri, rj ∈ R (7)∑
r∈R
Xr ≤M (8)

Here, Equation 1 is the objective function for maximizing
the code quality and minimizing the refactoring effort while
rewarding refactoring activities having higher priorities. Equa-
tion 2 ensures that the decision variables Xr and Yr are kept
consistent as their values are assigned. Equation 3 enforces
that no two refactorings are scheduled at the same point in the
sequence. Equation 4 and Equation 5 impose the sequential
dependency constraints (i.e., ri 9 rj) on feasible sched-
ules. Mutual exclusion (i.e., ri = rj) and mutual inclusion
(i.e., ri ↔ rj) constraints are enforced by Equation 6 and
Equation 7 respectively. Equation 8 specifies that maximum
M number of refactorings can be chosen for scheduling. By
default M = |R|, but M can be set to a lower integer when
a schedule of a certain number of refactoring activities is
desired, due to limitation of time, resource, or the like.

We implemented the CSOP model applying constraint
programming using OPL (Optimization Programming
Language) in the IBM ILOG CPLEX Optimization
Studio 12.2. Constraint programming is a recent
methodology that combines techniques from artificial
intelligence and operations research, and it has been proven
to be very effective in solving combinatorial optimization
problems, specially in the area of scheduling and planning [4],
[33].

VII. CASE STUDY

To evaluate our refactoring scheduler and the effort model,
we conducted a case study on refactoring four software
systems developed (or under development) in our software

TABLE III
SYSTEMS SUBJECT TO THE CASE STUDY

Subject SLOC DescriptionSystems

Mutation
Framework 2901

ongoing extended implementa-
tion of the mutation framework
proposed by Roy and Cordy [22]

LIME [31] 3494 A source code comparison en-
gine

gCad 4563 A clone genealogy extractor

VisCad [2] 9323 A tool for analysis and visualiza-
tion of code clones

research lab2. The subject systems and their sizes in terms
of source lines of code (SLOC) are described in Table III.
All the subject systems shown in Table III are written in Java
and the sizes of the systems in terms of SLOC exclude the
comments and blank lines.

In particular, the case study was designed to address the
following two research questions:

RQ1: Given a set of refactoring activities and constraints
among them, can our refactoring scheduler effec-
tively compute optimal scheduling of refactorings?

RQ2: Is the code clone refactoring effort model (described
in Section III) useful in capturing and estimating the
efforts required for performing the refactorings?

Typically, it is difficult and risky for the practitioners to
refactor a code base that they are not familiar with [17]. Rather,
it is the developers, who are likely to know the best about
the critical parts of the projects they develop, and so, they
can better assess the efforts and effects of refactoring, and
prudently assign priorities on certain refactoring candidates.
Therefore, to evaluate our refactoring scheduler, we chose
projects (Table III) developed in our own research lab. This
not only facilitated manual verification for correctness but also
reduced the evaluation cost.

At the beginning of the case study, we described to the
developers the objectives of the study, and provided them our
refactoring effort model, as well as an initial list of refactoring
operators that can be used for code clone refactoring. Then
we demonstrated to the developers a catalog of common
software refactoring patterns [9], and showed them how some
of those can be applied for code clone refactoring. We also
described to them the QMOOD design property metrics, and
upon discussion, came to a consensus to use the first six
metrics (Table II) in our study. We all agreed that the rest
of the metrics are too difficult to estimate through qualitative
analysis, and so we assumed that code clone refactoring will
not affect those metrics, and the total gain in code/design
quality (Section IV) was computed having values of changes
in those metrics set to zero. It should be noted that all the
developers were graduate students pursuing research in the
area of software clones, and thus possess some knowledge
and expertise in code clone analysis for refactoring.

2Software Research Lab, Department of Computer Science, University of
Saskatchewan, Canada

TABLE IV
CODE CLONES IN THE SYSTEMS UNDER STUDY

Subject Systems Clone Clone Total
Groups Fragments Refactorings

Mutation Framework 21 62 72
LIME [31] 20 55 67
gCad 28 91 93
VisCad [2] 57 136 166

A. Clone Detection

The first and foremost activity towards code clone refactor-
ing is the detection of code clones from the underlying code
base. We used the NiCad-2.6.3 [21] for detecting near-miss
(code clones that are not exact duplicates, but share certain
level of similarities) block clones of at least five lines in
pretty-printed format. We used the ‘blind-rename’ option of
NiCad having UPIT set to 30%. The ‘blind-rename’ option
instructs NiCad to normalize the code snippets by renaming
the identifiers before the comparison of code fragments. UPIT
(Unique Percentage of Items Threshold) is a size-sensitive
dissimilarity threshold, that NiCad uses to find near-miss
code clones. For example, if UPIT is set to 0% without the
‘renaming’ option, NiCad detects only the exact clones; if the
UPIT is 30% having the ‘renaming’ option set, NiCad detects
two code fragments as clones if at least 70% of the normalized
pretty-printed text lines are identical (i.e., if they are at most
30% different). NiCad reports code clones clustered into clone-
groups based on their similarity.

B. Data Acquisition

The results of clone detection from the four subject systems
were provided to the concerned developers, who then further
analyzed the detected clones and re-arranged the groups when
necessary, based on the suitability for refactoring within the
context. For the analysis, the developers used VisCad [2], a
code clone analysis and visualization tool developed in our
research lab. For each of the systems, the number of clone-
groups and the number of distinct blocks of code involved in
those groups are presented in Table IV, which the developers
identified as the potential candidates for refactoring.

Having the code clones organized into groups, the devel-
opers carried out further qualitative analysis to determine the
strategies for refactoring each of those refactoring candidates.
The identification of refactoring strategy in particular involved
finding the appropriate refactoring operations, their order of
application, and mutual dependencies (if any). For each clone-
group chosen for refactoring, the developers wrote down the
sequence operations that they would perform to refactor that
clone-group. In determining the operations, the developers
were free to choose any operations beyond the list of refac-
toring operators they were initially provided. The right-most
column of Table IV presents the total number of refactoring
operators identified for each of the subject systems. The
developers also noted down any restrictions in the ordering of
the operations that must be followed to successfully refactor
a clone-group. Any such ordering restrictions between clone-
groups were recorded as well.

TABLE V
EXAMPLE OF OPERATIONS AND EFFORTS FOR EXTRACT METHOD

Operations for extract method efforts
Produce signature of the target method 15
Copy clone fragment to the body of target method 1
Perform necessary modifications in the body 5
Replace clone fragments by calls to the extracted
method

2

Total effort 23

As an example, in Figure 1, we present a clone pair (shaded
blocks on the left) with context obtained from the source code
of VisCad3. The developers chose to refactor them applying
the extract method operation. The developers recorded further
fine grained operations and required efforts in order, as shown
in Table V. As explained by the developers, the effort for
producing the method signature was estimated by twice the
number of parameters to the method, plus one each for method
name, return type, and access modifier. Code modification
effort was estimated by the number of words (tokens) added,
deleted or modified.

Since the developers of each subject system separately
identified the refactoring operations, we found some variations
is the description/naming referring to the same operation. So,
we carried out a focus group discussion with the developers
and brought the names and descriptions of all the refactoring
operations under a common shared vocabulary.

For estimation of the refactoring efforts, we relied on
the developers’ opinions, and wanted to see to what extent
our effort model was useful in code clone refactoring effort
estimation. The developers were instructed to estimate efforts
required to perform each refactoring operation they identified,
or to each clone-group as a whole they chose to refactor.
Though they were provided the refactoring effort model, they
were free to apply their own understanding and analytical eval-
uations for the efforts estimation. As the developers estimated
refactoring efforts, at times, we observed and communicated
with them to understand how they were estimating the efforts
for refactoring.

In the estimation of quality gains expected from the refac-
torings of code clones, we again relied on the developers.
Using the QMOOD design property metrics (Table II), it
was relatively easy for the developers to estimate the quality
gain expected from refactoring of a clone-group. For example,
to estimate the change in design size or complexity, the
developers did not need to compute the total number of classes
or methods (before and after the refactoring) in the system,
they just had to estimate the changes in the number of classes
or methods. For instance, the refactoring example presented in
Figure 1 causes the complexity (number of methods) increase
by one, and all other QMOOD design property metrics under
consideration remain unaffected.

Next, the developers were instructed to assign non-zero

3The code is originally a part of diff-match-patch, an open-source
library (available at http://code.google.com/p/google-diff-match-patch/) that
VisCad makes use of. We deliberately chose to present this simple example,
so that anyone can easily follow and verify.

priorities between −5 (the lowest priority) and +5 (the highest
priority) to certain clone-groups they considered important in
terms of the necessity and risks involved in refactoring them.
The priorities are set to one for those clone-groups, which were
left unassigned by the developers. For each of the systems, the
developers identified some intentional code clones in particular
parts of the systems. They considered some of them to be
critical, and preferred not to take the risk of refactoring them.
Taking the developers’ opinions into consideration, we could
have excluded those from our study. Instead, we had the lowest
priority assigned to them for examining how our scheduler
handles them in the scheduling process.

C. Data Normalization

As described before, the estimation of expected change in
code/design quality and the estimation of refactoring efforts,
as well as the priorities were sometimes set on refactoring of
clone-groups as a whole. Therefore, in situations, where the
developers made those estimations for refactoring an entire
clone-group, we equally distributed those estimations to all
the refactoring operations involved in refactoring that clone-
group.

Recall that, the scheduling of code clone refactoring activ-
ities can be optimized towards three dimensions: minimizing
the refactoring efforts, maximizing the refactoring benefits,
and maximizing the satisfaction of priorities. However, the
ranges of values obtained along those dimensions were dif-
ferent. For example, the priorities range between +5 and −5,
whereas the values of total refactoring efforts vary between
four and 47. To prevent our scheduler getting biased towards
any of the individual dimensions, we first normalize the values
obtained for all the three dimensions using the following
procedure.

Let, S = {v1, v2, v3, . . . , vn} be a set of values, then

norm(vi) =
vi

max{|v1|, |v2|, |v3|, . . . , |vn|}
, ∀vi ∈ S

where, norm(vi) denotes the normalized value of vi. The set
S can be the set of values for all the refactorings along any
of the three dimensions. The normalization actually brings
the magnitudes all those values between zero and one (i.e.,
0 < |norm(vi)| ≤ 1), and thus discards the inter-dimension
influence of the magnitudes, while still preserving the relative
ratios of magnitudes within dimensions.

D. Schedule Generation

The normalized data are fed to our scheduler implemented
in OPL. The data and the OPL implementation of our sched-
uler are made available online4 for the interested parties.
In our study, we used the default settings in the estimation
of total effort and quality gain, as described in Section III
and Section IV. The scheduler, upon obtaining the data in
valid OPL format, applies constraint propagation and domain
reduction techniques [33] to generate the optimal solution
as instructed. The scheduler was run on the IBM ILOG

4http://usask.ca/∼minhaz.zibran/pages/research.html

TABLE VI
COMPARISON OF CP AND GREEDY SCHEDULING APPROACHES

Subject Scheduling Values at dimensions Refac.
systems approaches Prior. Effort Quality chosen

Mutation
Frame-
work

G
re

ed
y priority 20.06 21.94 18.53 40

effort 9.63 6.06 10.04 20
quality 18.16 21.82 19.64 42

CP 9.34 7.86 11.48 20

LIME G
re

ed
y priority 22.42 21.12 19.93 47

effort 13.00 8.28 13.61 33
quality 16.29 23.49 26.07 51

CP 11.04 12.32 16.12 33

gCad G
re

ed
y priority 19.65 21.62 20.00 41

effort 9.61 9.53 11.57 28
quality 12.05 23.48 25.98 44

CP 6.69 15.19 17.99 28

VisCad G
re

ed
y priority 36.14 32.57 25.71 66

effort 16.12 18.63 13.20 40
quality 29.02 33.81 34.32 72

CP 15.33 15.78 21.90 40

CPLEX Optimization Studio 12.2 IDE having all
its parameters set to the defaults. The experiments were
executed on Windows XP operating system running on an
Apple MacBookPro5,5 computer with Intel Core 2 Duo (2.26
GHz) processor.

We evaluated our scheduler in two phases. In the first
phase, we compared our CP optimization with the greedy
algorithm. For each of the subject systems, we first computed
the optimal refactoring schedule using our CP approach. Then
we compute schedules applying approaches greedy towards
each of the three dimensions (i.e., effort, quality, and priority)
as described earlier. Intuitively, the minimum refactoring effort
(i.e., zero effort) can be achieved by scheduling no refactoring
at all. So, in the application of the approach greedy towards
refactoring efforts, we set a minimum number of refactorings
that must be scheduled, which is equal to the number of
refactorings optimally scheduled by our CP scheduler. The
values along all the three dimensions obtained from these
scheduling approaches are presented in Table VI.

In the second phase of evaluation, our goal was set to sched-
ule roughly the 25% of the total number of refactorings for
each of the subject systems. The developers of the concerned
systems were instructed to do it manually (or, in the way
they would do it without help from any automated scheduler).
With the same goal, we executed our refactoring scheduler.
The values along the three optimization dimensions, obtained
from our CP scheduling and manual scheduling, are presented
in Figure 2.

E. Findings

From our observations during the case study and the devel-
opers feedback, as well as the results presented in Table VI
and Figure 2, we now answer the the two research questions
formulated before.

Answer to RQ1: Yes. Given a set of refactoring
activities and constraints among them, our refactor-
ing scheduler can effectively compute the optimal
scheduling of refactorings.

Manual CP Manual CP Manual CP Manual CP

21.90

9.5814.9413.38

7.976.83

10.46
9.16

15.78

10.36

13.19
14.00

4.71
9.39

6.93
8.18

15.33
10.04

5.016.147.48
2.15

8.93
5.73

VisCad

Mutation framework

LIME

gCad

Priority Effort Quality gain

Fig. 2. Automated CP vs. manual scheduling

For all the subject systems, as seen in Table VI, our
CP scheduler computes the optimal refactoring schedule by
efficiently making balance among the three optimization di-
mensions (i.e., effort, quality, and priority). For the smaller
systems (Mutation Framework, LIME, and gCad) the greedy
approaches, specially the approach greedy towards refactoring
efforts, closely competes with our CP approach. As the sizes
of the systems in terms of SLOC and the number of can-
didate refactorings increases, our CP scheduler outperforms
the greedy schedulers, which is vivid for the largest system,
VisCad.

The risks of refactorings can be best estimated by sub-
jective analysis by the individuals who are familiar with the
underlying code base. Quantitative measurement of such risks
would be very difficult, if not impossible. However, the risks
of refactorings can be expected to be positively proportional
to the number of refactorings. In this sense, our CP scheduler
also minimizes the risks of refactorings, as seen in the right-
most column of Table VI, the optimal schedule obtained from
our scheduler always includes the least number of refactorings,
compared to those from the greedy scheduling.

As expected, our CP scheduler always outperformed manual
scheduling for all the four subject systems (Figure 2). The
superiority in the optimality of the schedules (in terms of
efforts, quality gain, and priorities) obtained from our CP
scheduler compared to manual scheduling, gradually increased
as the sizes of the systems and the number of candidate
refactorings increased. Our CP scheduler took no more than
five seconds in computing any of the refactoring schedules
presented in this paper, whereas, for manual scheduling the
developers had to spend several hours depending on the
number of refactoring candidates and the constraints involved.

Answer to RQ2: Yes. The code clone refactoring
effort model (described in Section III) is useful in
capturing and estimating the efforts required for
performing the refactorings.

Regarding the refactoring effort model, the developers’
direct feedback was that the model was useful, and it guided
them in the estimation of the efforts. Moreover, the developers
expressed that an automated tool offering accurate calculations
according to the model, would be of immense help in this
regard. Our observations on the developers (while they were

estimating the refactoring efforts), also support this proposi-
tion. Some of the developers argued that the effort model was
useful for quantitative estimation of refactoring efforts, but
it alone could not capture the risks involved in code clone
refactoring. However, everyone agreed in the matter that the
effort model and the priority scheme in combination were
effective in capturing both the efforts and the risks.

F. Threats to Validity

In the case study, we relied on the qualitative evaluations
of the developers in the estimation of refactoring efforts and
effects. There is a possibility to question on the individual
developer’s ability to correctly estimate those. However, our
refactoring scheduler is independent of how the refactoring
data are obtained. Given a set of refactorings along with their
mutual constraints and priorities, as well as, the estimation
of refactoring efforts and change in code/design quality, how
effectively our scheduler can compute the optimal schedule,
becomes the question for evaluation. In this regard, we com-
pared our CP scheduler with the greedy approaches, as well
as the manual procedure, and our scheduler was found to have
outperformed both those techniques. We manually investigated
all the refactoring schedules obtained from our CP scheduler,
and confirmed correctness in terms of constraint satisfaction
and optimality.

This work is an extension to our recently published initial
concept [32], where the reviewers suggested to evaluate our
refactoring effort model from the developers’ perspective. We
also understand that manual scheduling of refactorings may be
too difficult for large systems, but for much smaller systems,
the developers can be expected to efficiently estimate the
efforts and risks involved in refactoring the system. Also note
that, the purpose of the case study was to evaluate not only
our refactoring scheduler, but also the refactoring effort model.
Hence, we intentionally chose the in-house systems and the
concerned developers for our case study. The subject systems
being in-house and fairly small, enabled the developers esti-
mate the refactoring efforts and effects with high probability of
accuracy. The same fact also facilitated manual investigation
of optimality of the refactoring schedules computed by our
scheduler.

Our refactoring effort model suggests some fine grained
computations (e.g., token modification efforts in terms of edit
distances), which were not possible for the developers to
perform by hand. For this reason, during estimation of the
refactoring efforts, the developers used our effort model as a
guideline, and followed it as much as it was feasible. However,
this does not affect the functionality of our refactoring sched-
uler. Rather, our observations and the developers expressions
towards the need of tool support for the effort model further
validate its necessity and effectiveness.

Though in this study, we depended on the manual estimation
of refactoring efforts and effects, we also showed how these
can be automatically computed making use of our effort model
and a design quality metric suite. The implementation of this
automation remains an immediate future work.

VIII. RELATED WORK

Until recently, many research have been conducted towards
effective identification and removal of code smells from the
code base. Fowler et. al. [8] introduced a catalog of 72
refactoring patterns, and till date, the number has increased
to 93 [9]. Since our work is focused on scheduling of code
clone refactoring, we confine our discussion on those work
that deal with scheduling of refactoring this code smell.

The work of Bouktif et. al. [5], Lee et. al. [18], and Liu et.
al. [17] closely relate to ours. Bouktif et. al. [5] formulated the
refactoring problem as a constrained Knapsack problem and
applied a metaheuristic genetic algorithm (GA) to obtain an
optimal solution. However, they ignored the constraints that
may exist among the refactorings. Lee et. al. [18] applied
ordering messy GA (OmeGA), whereas, Liu et. al. [17] ap-
plied a heuristic algorithm to schedule code clone refactoring
activities. Both of those work took into account the conflict
and sequential dependencies among the refactoring activities,
but missed the constraints of mutual inclusion and refactoring
effort. Our work significantly differs from all those work in
two ways. First, for computing the refactoring schedule, we
applied constraint programming approach, which is different
from theirs. Second, we took into account a wide category of
refactoring constraints and dimensions of optimization, some
of which they ignored, as summarized in Table VII. Although
Bouktif et. al. [5] proposed a clone refactoring effort model,
their model was for procedural code only, whereas, our effort
model is applicable to not only procedural but also OO source
code.

O’Keeffe et. al. [16] conducted an empirical comparison
of simulated annealing (SA), GA and multiple ascent hill-
climbing techniques in scheduling refactoring activities in five
software systems written in Java. They reported that the hill-
climbing approach outperformed both GA and SA techniques.
One of our immediate future work is to compare our technique
with those approaches.

A number of methodologies [7], [15], [25], [26], [29] and
metric based tools such as CCShaper [12] and Aries [11]
have been proposed for semi-automated extraction of code
clones as refactoring candidates. Several tools, such as
Libra [13] and CnP [14], have been developed for providing
support for simultaneous modification of code clones. Our
work is not on finding potential clones for refactoring or
providing editing support to apply refactorings. Rather, we
focus on efficient scheduling of those refactoring candidates,
which is missing in those tools. However, the metrics used in
those tools can be exploited to estimate the refactoring effort
and expected gain.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented our work towards conflict-aware
optimal scheduling of code clone refactorings. To estimate the
refactoring effort, we proposed an effort model for refactoring
code clones in OO source code. Moreover, the risks of
refactoring are captured in a priority scheme. Considering a
diverse category of refactoring constraints, we modelled the

TABLE VII
COMPARISON OF CODE CLONE REFACTORING SCHEDULERS

Refactoring Scheduling Refactoring Quality Sequential Mutual Mutual Priorities
scheduler approach effort gain dependency exclusion inclusion satisfaction
Bouktif et. al. [5] GA

√ √

Lee et. al. [18] OmeGA
√ √ √

Liu et. al. [17] Heuristic
√ √ √

Our Scheduler CP
√ √ √ √ √ √

clone refactoring problem as a CSOP, and implemented the
model using the CP technique. To the best of our knowledge,
ours is the first refactoring effort model for OO code corpus,
and our CP approach is a unique technique that no one in
the past reported to have applied in this regard. Our CP
scheduler computes the conflict-free schedule making optimal
balance among the three optimization dimensions: minimized
refactoring effort, maximized quality gain, and satisfaction of
higher priorities.

To evaluate our approach, we conducted a case study with
four in-house software systems and their developers. Through
comparison with greedy and manual approaches, we showed
that our CP scheduler outperformed those techniques. Our
refactoring effort model was also found to be useful for
estimating the efforts required for code clone refactoring. Our
immediate future work includes comparison of our scheduling
approach with other techniques, such as GA and SA. We
also plan for the automatic computation of refactoring efforts
and effects based on our effort model and a software quality
metric suite respectively. Our plan also includes evaluation of
our scheduler in larger context involving open-source and off-
the-shelf software systems written in diverse languages, and
finally integration of a smart scheduler with the code clone
management tool [31], currently we are developing.

Acknowledgments: This work is supported in part by the
Natural Science and Engineering Research Council of Canada
(NSERC). The authors also acknowledge the contributions
of Ripon Saha, Muhammad Asaduzzaman, Sharif Uddin, and
Mohammad Khan for participating in the case study and help-
ing in the evaluation of our code clone refactoring scheduler
and the effort model.

REFERENCES

[1] D. Advani, Y. Hassoun, and S. Counsell. Understanding the complexity
of refactoring in software systems: a tool-based approach. Intl. J. Gen.
Sys., 35(3): 329–346, 2006.

[2] M. Asaduzzaman, C. K. Roy, and K. Schneider. VisCad: Flexible Code
Clone Analysis Support For NiCad. In IWSC, 2 pp., 2011 (to appear).

[3] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented
design quality assessment. IEEE Trans. Softw. Engg., 28(1): 4–17, 2002.

[4] R. Barták. Constraint programming: In pursuit of the holy grail. In WDS
(invited lecture), 10 pp., 1999.

[5] S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo. A Novel Approach
to Optimize Clone Refactoring Activity. In GECCO, July 8 –12, 2006.

[6] S. Chidamber and C. Kemerer. A metric suite for object-oriented design.
IEEE Trans. Softw. Engg., 25(5): 476–493, 1994.

[7] S. Ducasse, M. Rieger, and G. Golomingi. Tool Support for Refactoring
Duplicated OO Code. In WOOT, pp. 177–178, 1999.

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison Wesley Professional,
1999.

[9] M. Fowler. Refactoring Catalog, http://refactoring.com/catalog/, (last
access: 12 April, 2011).

[10] Y. Higo, Y. Matsumoto, S. Kusumoto, and K. Inoue. Refactoring Effect
Estimation based on Complexity Metrics. In ASWEC, pp. 219–228,
2008.

[11] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES: Refactoring
Support Tool Code Clone. In 3-WoSQ, pp. 1 – 4, 2005.

[12] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring Support
Based on Code Clone Analysis. PROFES, LNCS 3009, pp. 220–233,
Springer-Verlag, 2004.

[13] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous Modifica-
tion Support based on Code Clone Analysis. In APSEC. pp. 262–269,
2007.

[14] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for
the proactive management of copy-and-paste programming. In ICPC,
pp. 238–242, 2009.

[15] E. Kodhai, V. Vijayakumar, G. Balabaskaran, T. Stalin, and B.Kanagaraj.
Method Level Detection and Removal of Code Clones in C and Java
Programs using Refactoring. In IJJCET, pp. 93 – 95, 2010.

[16] M. O’Keeffe and M. Ó Cinnéide. Search-based refactoring: an empirical
study. J. Softw. Maint. Evol.: Res. Pract., 20: 345 – 364, 2008.

[17] H. Liu, G. Li, Z. Ma, and W. Shao. Conflict-aware schedule of software
refactorings. IET Softw., 2(5): 446–460, 2008.

[18] S. Lee, G. Bae, H. S. Chae, and D. Bae, and Yong Rae Kwon. Automated
scheduling for clone-based refactoring using a competent GA. Softw.
Pract. Exper., Wiley Online Library, 2010.

[19] T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies
using graph transformation. J. Softw. and Syst. Modeling, 6(3): 269–285,
2007.

[20] J. Pérez, Y. Crespo, B. Hoffmann, and Tom Mens. A case study
to evaluate the suitability of graph transformation tools for program
refactoring. Intl. J. Softw. Tools Tech. Transfer, 12: 183–199, 2010.

[21] C. K. Roy and J. R. Cordy, “NiCad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization”.
In ICPC, pp. 172–181, 2008.

[22] C. K. Roy and J. R. Cordy, “A Mutation / Injection-based Automatic
Framework for Evaluating Clone Detection Tools”, In Mutation, pp.
157–166, 2009.

[23] M. Rieger, S. Ducasse, and M. Lanza. Insights into System-wide Code
Duplication. In WCRE, pp. 100–109, 2004.

[24] H. Sahraoui, R. Godin, and T. Miceli. Can metrics help to bridge the
gap between the improvement of OO design quality and its automation?.
In ICSM, pp. 154–162, 2000.

[25] S. Schulze, M. Kuhlemann, and M. Rosenmüller. Towards a Refactoring
Guideline Using Code Clone Classification. In WRT, pp. 6:1–6:4, 2008.

[26] S. Schulze and M. Kuhlemann. Advanced Analysis for Code Clone
Removal. In WSR, 2009.

[27] F. Simon, F. Steinbrucker, and C. Lewerentz. Metrics based refactoring.
In CSMR, pp. 30–38, 2001.

[28] L. Tahvildari and K. Kontogiannis. A metric-based approach to enhance
design quality through meta-pattern transformations. In CSMR, pp. 183–
192, 2003.

[29] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. On refac-
toring support based on code clone dependency relation. In METRICS,
10 pp., 2005.

[30] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy. Analyzing
and Forecasting Near-miss Clones in Evolving Software: An Empirical
Study. In ICECCS, 10 pp., 2011 (to appear).

[31] M. F. Zibran and C. K. Roy. Towards Flexible Code Clone Detection,
Management, and Refactoring in IDE. In IWSC, 2 pp., 2011 (to appear).

[32] M. F. Zibran and C. K. Roy. Conflict-aware Optimal Scheduling of
Code Clone Refactoring: A Constraint Programming Approach. In ICPC
(Student Symposium), 4 pp., 2011 (to appear).

[33] M. F. Zibran. A Multi-phase Approach to University Course
Timetabling. M.Sc. Thesis, Department of Mathematics and Computer
Science, University of Lethbridge, Canada, 125 pp., 2007.

