
Published in IET Software
Received on 3rd April 2012
Revised on 9th April 2013
Accepted on 9th April 2013
doi: 10.1049/iet-sen.2012.0058

Special Issue: 11th IEEE International Working
Conference on Source Code Analysis and Manipulation

ISSN 1751-8806

Conflict-aware optimal scheduling of prioritised code
clone refactoring
Minhaz Fahim Zibran, Chanchal Kumar Roy

Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N5C9

E-mail: minhaz.zibran@usask.caminhaz.zibran@gmail.com

Abstract: Duplicated or similar source code, also known as code clones, are possible malicious ‘code smells’ that may need to be
removed through refactoring to enhance maintainability. Among many potential refactoring opportunities, the choice and order of
a set of refactoring activities may have distinguishable effect on the design/code quality measured in terms of software metrics.
Moreover, there may be dependencies and conflicts among those refactorings of different priorities. Addressing all the conflicts,
priorities and dependencies, a manual formulation of an optimal refactoring schedule is very expensive, if not impossible.
Therefore an automated refactoring scheduler is necessary to ‘maximise benefit and minimise refactoring effort’. However,
the estimation of the efforts required to perform code clone refactoring is a challenging task. This study makes two
contributions. First, the authors propose an effort model for the estimation of code clone refactoring efforts. Second, the
authors propose a constraint programming (CP) approach for conflict-aware optimal scheduling of code clone refactoring. A
qualitative evaluation of the effort model from the developers’ perspective suggests that the model is complete and useful for
code clone refactoring effort estimation. The authors also quantitatively compared their refactoring scheduler with other well-
known scheduling techniques such as the genetic algorithm, greedy approaches and linear programming. The authors’
empirical study suggests that the proposed CP-based approach outperforms other approaches they considered.

1 Introduction

Code clone (duplicate or near-duplicate source code) is a
well-known code smell [1, 2]. Programmers’ copy–paste–
modify practice is regarded as one of the main reasons for
such ‘intentional’ clones that are beneficial in many ways [3]
during the development phase. For example, code cloning is a
code reuse mechanism commonly adopted by developers for
increased productivity. Cloning of existing code, which is
already known to be flawless, might save the developers from
probable mistakes that they might have made if they had to
implement the same from scratch. It also saves time and effort
in devising the logic and typing the corresponding textual
code. Code cloning may also help in decoupling classes or
components and facilitate independent evolution of similar
feature implementations. However, unintentional clones also
appear because of a number of reasons. For example, the use
of design patterns, frameworks and application programming
interface (APIs) may result in unintentional code clones.
Previous studies reported that software systems might have
9–17% [4] duplicated code, up to 50% [5].
Code clones may also be detrimental in many cases.

Obviously, redundant code may inflate the codebase and
may increase resource requirements. Such increases in
resource requirements may be crucial for embedded systems
and systems such as hand-held devices, telecommunication
switches and small sensor systems. Copying a fragment
containing any unknown bugs may result in fault
propagation. From the maintenance perspective, the

existence of code clones may increase maintenance effort.
For example, a change in a clone fragment may require
careful and consistent changes to all copies of the fragment.
Any inconsistency may introduce bugs. Nevertheless, in
many cases, code clones are unavoidable or even desirable.
Yet, to prevent code inflation and reduce maintenance cost,
the number of code clones should be minimised by
applying justified refactoring. However, refactoring is not
free, rather it is often risky as it might introduce new bugs
and hidden dependencies. Moreover, not all clones can
always be feasible targets of refactoring. Therefore it is
important to have a prioritised refactoring schedule of the
potential refactoring candidates (i.e. clones that are
refactorable) so that the maintenance engineers can focus on
a short list of refactoring candidates considering the existing
constraints, potential benefits, risks and available resources.
There are many patterns [1, 6] for refactoring source code

in general. Given a context, a refactoring pattern describes a
sequence of refactoring activities (i.e. modification
operations) that can be performed to improve code/design
quality. However, not all of the refactoring patterns are
directly applicable to code clone refactoring. The
applicability of a certain refactoring largely depends on the
context (e.g. dependency of the code fragment under
consideration with the rest of the source code). Therefore,
for code clones, refactoring activities and the relevant
contexts must to be identified in the first place. The
consequences of clone refactoring (e.g. impact on the code/
design quality) should also be taken into account. The

www.ietdl.org

IET Softw., pp. 1–20 1
doi: 10.1049/iet-sen.2012.0058 & The Institution of Engineering and Technology 2013

effort required for applying certain refactoring on the code
clones should also be minimised to keep the maintenance
cost within reach. The application of a subset of
refactorings from a set of applicable refactorings may result
in distinguishable impact on the overall code quality.
Moreover, there may be sequential dependencies and
conflicts among the refactorings, which lead to the
necessity that, from all refactoring candidates a subset of
non-conflicting refactorings be selected and ordered for
application, such that the quality of the codebase is
maximised whereas the required effort is minimised [7].
Automated software refactoring is often performed with the

aid of graph transformation tools [8], where the available
refactorings are applied without having been optimally
scheduled [9]. The application order of the semi-automated
(or manual) refactorings is usually determined implicitly by
human developers. However, developers’ efforts may be
inefficient and error-prone, especially for large systems.
Although experienced developers may do it well,
inexperienced ones may build a poor/infeasible schedule. The
challenge is likely to be more severe when refactoring legacy
systems or when a developer new to the codebase must devise
the refactoring schedule. Therefore automated (or
semi-automated) scheduling for performing selection and
ordering of refactorings from a set of refactorings is a justified
need. However, such a scheduling of code clone refactoring is
a ‘non-deterministic polynomial-time (NP)-hard’ problem [9–
11] and, thus, the complexity of a problem instance grows
exponentially for large systems having many code clones.
In this regard, this paper makes two contributions. First, we

introduce an ‘effort model’ for estimating the developers’
effort required to refactor code clones in procedural or
object-oriented (OO) programs. Second, taking into account
the ‘effort model’ and a wide variety of possible hard and
soft constraints, we formulate the scheduling of code clone
refactorings as a constraint satisfaction optimisation
problem (CSOP) and solve it by applying constraint
programming (CP) techniques that aims to maximise
benefits (measured in terms of changes in the code/design
quality metrics) while minimising refactoring efforts.
To the best of our knowledge, ours is the first effort model

for refactoring OO source code and we are the first to apply
CP techniques in the scheduling of code clone refactorings.
We choose to adopt CP for two main reasons. First, CP is a
natural fit for solving CSOPs such as scheduling problems.
Second, this technique integrates the strengths from both
artificial intelligence (AI) and operations research (OR) and
has been shown efficient in solving CSOPs [12, 13].
To evaluate the effectiveness of our scheduler and the code

clone refactoring effort model, we also conduct an empirical
study on six software systems written in Java. We find that our
scheduler is capable of efficiently computing the optimal
refactoring schedule and our refactoring effort model offers
significant help in the estimation of the refactoring efforts.
This research is a significant extension to our previous

work [14], in which we introduced the clone refactoring
effort model and our CP scheduler. The initial evaluation of
the CP scheduler was based on an empirical study with four
subject systems and comparison with greedy and manual
scheduling approaches. We extended the work in several
directions. First, we developed additional schedulers using
genetic algorithm (GA) and linear programming (LP)
techniques. Second, we compared our CP scheduler with
the GA and LP schedulers. Third, we extended the
empirical study with two more subject systems and two
more developers.

The remainder of the paper is organised as follows. In
Section 2, we describe the terminologies and concepts
necessary to follow the paper. In Section 3, we identify the
refactoring patterns that are suitable for code clone
refactoring. In Section 4, we describe our clone refactoring
effort model. Section 5 discusses how the effect of
refactoring can be estimated by a developer. In Section 6,
we describe the possible constraints on refactorings. In
Section 7, we present our CSOP formulation of the
refactoring scheduling problem. In Section 9, we illustrate
our empirical study to evaluate our refactoring scheduler
and the effort model. In Section 10, we discuss related
work. Finally, in Section 11, we conclude the paper in our
directions to future research.

2 Background

In this section, we describe the terminologies and background
necessary to follow the remainder of the paper.
Similar or duplicated code fragments are known as code

clones. Over more than a decade of research on code
clones, the following categorising definitions of code clone
have been widely accepted today [4, 15–19].

Type-1 clones: Identical code fragments except for variations
in white-spaces and comments are ‘Type-1’ clones.
Type-2 clones: Structurally/syntactically identical fragments
except for variations in the names of identifiers, literals,
types, layout and comments are called ‘Type-2’ clones.
Type-3 clones: Code fragments that exhibit similarity as of
‘Type-2’ clones and also allow further differences such as
additions, deletions or modifications of statements are
known as ‘Type-3’ clones.
Type-4 clones: Code fragments that exhibit identical
functional behaviour but implemented through different
syntactic structure are known as ‘Type-4’ clones.

The granularity of the code clones (fragments) can be at
different levels, such as the entire function bodies (i.e.
function clones), syntactic blocks (i.e. block clones) or
contiguous sequences of arbitrary statements. The block
clones also subsume the function clones, that is, each

Fig. 1 Examples of Type-1, Type-2 and Type-3 clones

www.ietdl.org

2 IET Softw., pp. 1–20
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0058

function clone is also a block clone, as the entire function
body can be regarded as a syntactic block. ‘Type-1’ clones
are also called ‘exact’ clones, whereas the ‘Type-2’ and
‘Type-3’ clones are also known as ‘near-miss’ clones.
Owing to the semantic similarity rather than syntactic
similarity, ‘Type-4’ clones are also referred to as ‘semantic’
clones. Our work deals with the exact (Type-1) and
near-miss (Type-2 and Type-3) ‘block’ clones excluding the
semantic (‘Type-4’) clones, because the accurate detection
of semantic (‘Type-4’) clones is still an open problem.
Two code fragments that are clones to each other are called

a ‘clone-pair’. A ‘clone-group’ is a set of clone fragments
such that any two members of the set is a clone-pair. Fig. 1
presents examples of different types of function clone-pairs.
In the figure, the code fragment (a) and fragment (b) form a
Type-1 clone-pair, fragment (a) and fragment (c) form a
Type-2 clone-pair and the fragment (a) and fragment (d)
form a Type-3 clone-pair. All the four code fragments can
form a clone-group. Another example, is presented in

Fig. 2, where the two shaded blocks in the left form a block
level exact clone-pair.

3 Clone refactoring

There have been immense research in software refactoring in
general. Fowler et al. [1] initially proposed a set of 72
software refactoring patterns and until recently the number
has increased to 93 [6]. Those patterns of refactorings in
general are meant to get rid of different types of code
smells (including duplicated code) and to prevent software
decay (i.e. loss of code/design quality) [20]. Based on a
survey of existing literature [11, 15, 21–24] and our
experience, we find that among those general software
refactoring patterns [1, 6], the following patterns are
particularly suitable for code clone refactoring. Details
about these refactoring patterns can be found elsewhere [1, 6].

Fig. 2 Example of clone refactoring in VisCad: the method on the top-right corner is extracted by generalising the clone-pairs (shaded blocks
on the left)

Fig. 3 Different OO patterns for code clone refactoring

www.ietdl.org

IET Softw., pp. 1–20 3
doi: 10.1049/iet-sen.2012.0058 & The Institution of Engineering and Technology 2013

† Extract method (EM) extracts a block of code as a new
method and replaces that block by a call to the newly
introduced method. EM may cause splitting of a method
into pieces. For code clone refactoring, similar blocks of
code can be replaced by calls to an extracted generalised
method. Fig. 2 shows an example of the EM refactoring.
† Pull-up method (PM) removes similar methods found in
several classes by introducing a generalised method in their
common superclass. Fig. 3a demonstrates a PM refactoring
through a schematic diagram.
† Extract superclass (ES) introduces a new common
superclass for two or more classes having similar methods
and then applies PM. ES refactoring may be necessary
when those classes do not already have a common
superclass and those classes can be brought under a
common superclass. Fig. 3b presents an a schematic
diagram demonstrating the ES refactoring pattern.
† Extract utility-class (EU) is applicable in situations where
similar functions are found in different classes, but those
classes do not conceptually fit to undergo a common
superclass. A new class is introduced that accommodates a
method generalising the similar methods that must be
removed from those classes. Fig. 3c demonstrates EU
refactoring through a schematic diagram.

A refactoring pattern is composed of a sequence of other
refactoring patterns or low-level modification operations
such as ‘identifier renaming, method parameter re-ordering,
changes in type declarations, splitting of loops, substitution
of conditionals, loops, algorithms and relocation of method
or field’, which may be necessary to produce generalised
blocks of code from near-miss (similar, but not exact
duplicate) clones. For the purpose of formulation, we use
the term ‘refactoring operators’ to denote both the
composite refactoring patterns and low-level modification
operations.
For code clone refactoring, these refactoring operators will

operate on groups of clone fragments (i.e. code blocks that are
clones of each other) having two or more members. We refer
to such clone-groups as the refactoring ‘operands’ or
‘candidates’. Thus, a ‘refactoring activity’ (or simply,
refactoring) r can be formalised as:

r = kop, gl, where op [{EM, PM, ES, EU, . . . }

and g is the clone-group on which the refactoring operator
‘op’ operates. More than one refactoring operators may be
needed to refactor the same clone-group and, thus, a
complete refactoring of a clone-group may require more
than one refactoring activity.
Let us consider a clone-group, g = {c1, c2, c3, …, cn},

where ci(1 ≤ i ≤ n) is a clone fragment inside method mi,
which is a member of class Ci hosted in file Fi contained in
directory Di. Mathematically

c↷i m
↷
i C

↷
i F↷

i Di, for object - oriented code

c↷i m
↷
i F

↷
i Di, for procedural code

where the symbol ↷ indicates a containment relationship.
x↷y means that x is contained in y, in other words, y
contains x. The relationship preserves transitive property,
that is, x↷y↷z ⇒ x↷z. Thus, the set C(g) of all classes

hosting the clone fragments in g can be defined as

C(g) = Ci |∀ci [g, c↷i Ci

{ }
(1)

We use this notation in subsequent sections of this paper, in
particular, in formalising the navigation effort in Section 4.3.

4 Estimation of refactoring effort

The effort required for code clone refactoring is likely to
depend on the type of refactoring operators and operands.
For example, applying the EM refactoring pattern on exact
duplicate code clones will require less effort than that for
applying it on near-miss code clones. Moreover, refactoring
clone code fragments that are scattered across different
locations of the source code with respect to the file system
or inheritance hierarchy may require relatively more effort
than that for refactoring clones residing cohesively at a
certain location of the source code. To address these issues,
we propose a code clone ‘refactoring effort model’, which,
to the best of our knowledge, is the first model for the
estimation efforts needed to refactor code clones in
procedural and OO source code. We have formulated this
‘effort model’ based on our understandings, developed from
a survey of existing literature [1, 6, 20, 22, 25–27] and our
experience in clone refactoring.

4.1 Context understanding effort

The applicability of refactoring on certain code clones is
largely dependent on the context. The context captures the
relationship of a certain code fragment with the rest of the
source code. Therefore before refactoring, the developer
must understand the context pertaining to the refactoring
candidate at hand. Code clone refactoring may result in
removal or relocation of code fragments that may span a
block of code or an entire method/function or even an
entire class. Such removal or relocation of code fragments
may cause changes in the underlying inheritance hierarchy
and method call-graph. Hence, for understanding the
context and the possible impact of changes, the developer
must examine the caller–callee delegation of methods and
the inheritance hierarchy.

4.1.1 Effort for understanding method delegation: A
certain refactoring under consideration may cause the clone
fragment to move to a different location (e.g. class,
package). Such a relocation may hinder the visibility of any
methods to which the clone fragment refers. Moreover, if a
function clone is relocated, all references to the original
function must be updated accordingly. To understand the
delegation of methods involving the concerned code
fragment ci∈ g, the developer must understand the chain of
methods that can be reached from ci via caller–callee
relationships. Let Mr(ci) be the set of all such methods. The
developer must also comprehend the set Mf(ci) of all the
methods from which ci can be reached via caller–callee
relationships.
Then, the set of methods to be investigated for

understanding the delegation effort concerning ci is
determined as

delegation ci
() = Mf ci

()
<Mr ci

()
< mi

{ }
(2)

Hence, for understanding delegation concerning all the clone

www.ietdl.org

4 IET Softw., pp. 1–20
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0058

fragments in g, the set of methods required to examine,
becomes

Delegation(g) =
⋃

ci[C(g)

delegation ci
()

(3)

Thus, for the clone-group g, the total effort for understanding
method delegation can be estimated as

Ed(g) =
∑

m[Delegation(g)

LOC(m) (4)

where LOC(m) computes the total lines of code in method m
including the comments, but excluding all blank lines.

4.1.2 Effort for understanding inheritance
hierarchy: Suppose that Cp(g) is the set of all lowest/
closest common superclasses of all pairs of classes in C(g)
[For any two Java classes Ci and Cj containing code clones
ci and cj, respectively, there may be at most one lowest
common superclass, as Java does not support multiple
inheritance. Any Java class is a subclass of the Object class.
If this Object class is found to be the lowest common
superclass of any pair of classes, this can be ignored, and
those classes are considered to have no common
superclass.]. The developer must also understand those
classes in the inheritance hierarchy that have overridden (in
subclasses) or referred to method mi containing any code
clone ci∈ g. Let Cs(g) be the set of all such classes. Then,
Ch(g) = {Cp(g) ∪ Cs(g) ∪ C(g)} becomes the set of all
classes required to be examined for understanding the
inheritance hierarchy concerning the code clones in g and
the effort Eh(g) required for this can be estimated as

Eh(g) =
∑

C[Ch(g)

LOC(C) (5)

4.2 Effort for code modifications

To perform refactoring on the target clones, the developer
must edit at different locations in the source code. The
effort needed to perform such edits can be captured in
terms of token modifications and code relocations.

4.2.1 Token modification effort: Developer’s source
code modification activities typically include modifications
in the program tokens (e.g. identifier renaming). Let T =
{t1, t2, t3, …, tk} be the set of tokens such that a token ti∈
T is required to be modified to t′i and the edit distance
between ti and t′i is denoted as d ti, t

′
i

()
. Then, the total effort

Et(g) for token modifications can be estimated as

Et(g) =
∑k
i=1

d ti, t
′
i

()
(6)

However, the state-of-the-art integrated development
environments (IDEs) such as Eclipse and NetBeans
facilitate identifier/variable renaming simply by select–
replace operations with the help of graphical user interfaces.
Thus, with the availability of such tool support, the edit
distance d ti, t

′
i

()
can simply be replaced by a constant µ. By

default, µ = 1, but the developer can set a different value to
µ as appropriate.

4.2.2 Code relocation effort: When developers must
move a piece of code from one place to another, they
typically select a block of adjacent statements and relocate
them all at a time. Hence, the code relocation effort Er(g)
can be estimated as

Er(g) = |b|

where β is the set of all non-adjacent blocks of code that must
be relocated to perform the refactoring. |β| denotes the number
of blocks in the set β.

4.3 Navigation effort

Effort for source code comprehension, modification and
relocation is also dependent on the number of files and
directories involved and their distributions in the file-system
hierarchy. To capture this effort, our model includes the
notion of navigation effort, En(g), calculated as follows

En(g) = |Fd(g)< Fh(g)| + |Dd(g)< Dh(g)|
+ DCH(g)+ DFH(g) (7)

where:

Fd(g) = Fi | m↷
i Fi, mi [Delegation(g)

{ }
Fh(g) = Fi | C↷

i Fi, Ci [Ch(g)
{ }

Dd(g) = Di | F↷
i Di, Fi [Fd(g)

{ }
Dh(g) = Di | F↷

i Di, Fi [Fh(g)
{ }

DCH(g) = max
Ci,Cj[Ch(g)

∂(Ci, Cj)
{ }

DFH(g) = max
Fi,Fj[Fd (g)<Fh(g)

ð(Fi, Fj)
{ }

Here, DCH(g) refers to the ‘dispersion of class hierarchy’
with ∂(Ci, Cj) denoting the distance between class Ci and
class Cj in the inheritance hierarchy. The distance between
any two classes Ci and Cj is computed based on an abstract
directed graph where each node represent a class and their
exists an edge between each superclass and its subclass. Let
Cp be the lowest common superclass of both Ci and Cj.
Then, ∂(Ci, Cj) = max{pathLength(Ci, Cp), pathLength(Cj,
Cp)}, where pathLength(Ci, Cp) is measured as the number

Fig. 4 Computation of distance between classes

www.ietdl.org

IET Softw., pp. 1–20 5
doi: 10.1049/iet-sen.2012.0058 & The Institution of Engineering and Technology 2013

of edges in the shortest path from Ci to Cp. In Fig. 4, the
computation of distance between classes is illustrated with
an example. More detail about DCH(g) can be found
elsewhere [21]. DFH(g) is a similar metric that captures the
‘dispersion of files’ with ð

(
Fi, Fj

)
denoting the distance

between files Fi and Fj in the file-system hierarchy.

4.4 Effort model

Based on the criteria discussed before, the total effort E(g)
needed to refactor clone-group g is estimated as

E(g) = wd × Ed(g)+ wh × Eh(g)+ wt

× Et(g)+ wr × Er(g)+ wn × En(g) (8)

where wd, wh, wt, wr, and wn are, respectively, the weights on
the efforts for understanding method delegation,
understanding inheritance hierarchy, token modification,
code relocation and navigation. By default, they are set to
one, but the developer may assign different weights to
penalise certain types of efforts.

5 Prediction of refactoring effects

The expected benefit from code clone refactoring is the
structural improvement in the source code, which should
also enhance the software design quality. Obvious expected
benefits include reduced source lines of code (SLOC), less
redundant code, to name a few. For procedural code,
procedural metrics (e.g. SLOC, cyclomatic complexity) as
well as structural metrics (e.g. fan-in, fan-out and
information flow) can be used to estimate software quality
after refactoring. For OO systems, these metrics can be
supplemented by OO design quality models, such as
quality model for object-oriented design (QMOOD) [28] or
design quality metrics, such as the Chidamber–Kemerer
[29] metric suite. Quantitative or qualitative estimation of
the effect of refactoring on the quality metrics can be
possible before the actual application of the refactoring [10,
11, 30–32].
Having chosen a suitable set of quality attributes; let Q =

{q1, q2, q3,…, qη} be the set of quality attribute values before

refactoring and Qr = q′1, q
′
2, q

′
3, . . . , q

′
h

{ }
be the estimated

values of those quality attributes after applying refactoring
r. The impact of a certain refactoring r in code/design
quality can be assessed by comparing the quality attributes
before and after performing that particular refactoring.
Hence, the total gain (or loss) in quality Qr from refactoring
r can be estimated as

Qr =
∑h
j=1

qj × q j′ − qj

()
(9)

where qj is the weight on the jth quality attribute. By default
qj = 1, but the developers can assign different values to
impose more or less emphasis on certain quality attributes.
In our work, we use the QMOOD design quality model for

estimating the effect of refactoring on OO source code.
QMOOD is a prominent quality model for OO systems,
which is used by other researchers [9–11]. We choose
QMOOD because this quality model has the advantage that
it defines six high-level design quality attributes (Table 1)
from the 11 lower level structural property metrics

(Table 2). Indeed, the sum of differences in (9) may not be
able to utilise the full benefit of the quality model, but it
serves our purpose.

6 Refactoring constraints

Among the applicable refactorings, there may be conflicts and
dependencies [26] besides their distinguishable impacts on
the design quality. The application of one refactoring may
cause the operands of other refactorings to disappear and
thus may invalidate their applicability [10, 11, 26]. Besides
such ‘mutual exclusion’ on conflicting refactorings, the
application of one refactoring may also reveal new
refactoring opportunities, as suggested by Lee et al. [11].
We understand that these are largely because of the
composite structure of certain refactoring patterns, where
one larger refactoring is composed of several smaller core
refactorings [20]. For example, when ES refactoring is
applied, PM is also applied as a part of it (Fig. 3b).
There may also be ‘sequential dependencies’ between

refactoring activities [11, 26]. Constraints of ‘mutual
inclusion’ may also arise when the application of one
refactoring will necessitate the application of certain other
refactorings [24]. Fig. 5a presents an example of mutual
inclusion constraint and Fig. 5b demonstrates a mutual
exclusion constraint with an example. The organisation’s
management may also impose ‘priorities’ on certain
refactoring activities [10], for example, lower priorities on
refactoring clones in the critical parts of the system. We
identify such priorities as soft constraints in addition to the
following three types of hard constraints.

Table 1 QMOOD formula for quality attributes [28]

Attribute Formula

reusability = −0.25 × DCC + 0.25 × CAM+ 0.5 × CIS + 0.5 ×
DSC

flexibility = 0.25 × DAM − 0.25 × DCC + 0.5 ×MOA+
0.5 × NOP

understandability = −0.33 × ANA+ 0.33 × DAM − 0.33 × DCC +
0.33 × CAM − 0.33 ×NOP − 0.33 ×NOM −
0.33 × DSC

functionality = 0.12 × CAM+ 0.22 ×NOP + 0.22 × CIS +
0.22 × DSC + 0.22 ×NOH

extendability = 0.5 × ANA − 0.5 × DCC + 0.5 ×MFA + 0.5 ×
NOP

effectiveness = 0.2 × ANA+ 0.2 × DAM+ 0.2 ×MOA+ 0.2 ×
MFA + 0.2 × NOP

Table 2 QMOOD metrics for design properties [28]

Design property Metric Description

design size DSC design size in classes
complexity NOM number of methods
coupling DCC direct class coupling
polymorphism NOP number of polymorphic methods
hierarchies NOH number of hierarchies
cohesion CAM cohesion among methods in class
abstraction ANA average number of ancestors
encapsulation DAM data access metric
composition MOA measure of aggregation
inheritance MFA measure of functional abstraction
messaging CIS class interface size

www.ietdl.org

6 IET Softw., pp. 1–20
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0058

Definition 1 (Sequential dependency): Two refactorings ri and
rj are said to have sequential dependency, if ri cannot be
applied after rj. This is denoted as rj↛ri.

Definition 2 (Mutual exclusion): Two refactorings ri and rj are
said to be mutually exclusive, if both ri↛rj and ri↚rj holds.
The mutual exclusion between ri and rj is denoted as ri↮rj.
Thus, ri↮rj implies both rj↛ri and ri↛rj.

Definition 3 (Mutual inclusion): Two refactorings ri and rj are
said to be mutually inclusive, if ri is applied, rj must also be
applied before or after ri, and vice versa. This is denoted as
ri↔ rj.

The complete independence of ri and rj is expressed as
ri⊥rj. For further detail about the refactoring constraints
with concrete examples, interested readers are referred to
elsewhere [10, 11, 24, 26].

7 Formulation of refactoring schedule

Upon identification of all the hard and soft constraints
pertaining to a scheduling problem instance, computing an
optimal refactoring schedule to maximise code quality
while minimising efforts is a NP-hard problem [9–11].
Finding the optimum solution for a large instance of such a
problem becomes practically too expensive
(time-consuming) and, thus, a feasible optimal
(near-optimum) solution is desired. However, the problem
is by nature a CSOP. A CSOP is a kind of problem
characterised by a set of constraints that must be satisfied
and among all the feasible solutions, the best possible
solution is desired. A solution is said to be feasible if it
satisfies all the constraints. A solution is evaluated better

than another based on an objective function, which a solver
strives to optimise (i.e. maximise or minimise). We model
the refactoring scheduling problem as a CSOP and solve it
by applying a CP technique, which no one reported to have
applied before.
Having identified the set R of potential refactoring

activities, we define two decision variables X r and Yr

X r = 0, if r [R is not chosen
1, if r [R is not chosen

{

Yr = 0, if r [R is not chosen
k, if r [R is chosen as the kth activity

{

where 1 ≤ k ≤ |R|. Thus, X r captures whether a refactoring r
is included in the schedule and Yr captures the order of
refactoring r in the selected schedule of refactorings.
We also define a |R| × |R| constraint matrix Z to capture

the constraints and sequential dependencies between distinct
refactorings ri and rj:

Zi,j =

0, if ri ⊥ rj
1, if ri↮rj
+2, if rj↛ri and ri ↔ rj
−2, if ri↛rj and ri ↔ rj
+3, if rj↛ri, but neither ri ↔ rj nor ri↮rj
−3, if ri↛rj, but neither ri ↔ rj nor ri↮rj

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Zi,j = −Z j,i or Zi,j = Z j,i = 1, for all 〈i, j〉.
Let ρr be the priority on the refactoring r that operates on

clone-group gr. The CSOP formulation of the refactoring

Fig. 5 Mutual inclusion and mutual exclusion constraints on clone refactoring

www.ietdl.org

IET Softw., pp. 1–20 7
doi: 10.1049/iet-sen.2012.0058 & The Institution of Engineering and Technology 2013

scheduling problem can be defined as follows

maximise
∑
r[R

X rrr Qr − E gr
()()

(10)

subject to (with i ≠ j)

X r + Yr = 1, ∀r [R (11)

X ri
+X rj

= 2 ⇒ Yri
= Yrj

, ∀ri, rj [R (12)

Zi,j −Z j,i . 0 ⇒ Yri
, Yrj

, ∀ri, rj [R (13)

Zi,j −Z j,i , 0 ⇒ Yri
. Yrj

, ∀ri, rj [R (14)

|Zi,j| = 1 ⇒ X ri
+X rj

≤ 1, ∀ri, rj [R (15)

|Zi,j| = 2 ⇒ X ri
+X rj

()
modulo 2 = 0,

∀ri, rj [R (16)
∑
r[R

X r ≤ M (17)

Here, (10) is the objective function for maximising the code
quality and minimising the refactoring effort while
rewarding refactoring activities having higher priorities.
One of the product term in the objective function is X r,
which is equal to 1 only for selected refactorings, and for
all other refactorings X r equals to 0. Thus, the objective
function takes into account the priority, quality and efforts
pertaining to only the selected refactorings.
Equation (11) ensures that the decision variables X r and Yr

are kept consistent as their values are assigned. If the
refactoring r is not selected (i.e. X r = 0), then Yr must also
be 0, to denote that the refactoring r is not assigned any
position in the sequence of the scheduled refactorings. If
the refactoring r is selected (i.e. X r = 1), then Yr must not
be zero, that is, X r + Yr = 1.
Equation (12) enforces that no two refactorings are

scheduled at the same point in the sequence. Equations (13)
and (14) impose the sequential dependency constraints (i.e.
ri↛rj) on feasible schedules. Mutual exclusion (i.e. ri↮rj)
and mutual inclusion (i.e. ri↔ rj) constraints are enforced
by (15) and (16), respectively. Equation (17) specifies that
maximum M number of refactorings can be chosen for
scheduling. By default M = |R|, but M can be set to a
lower integer when a schedule of a certain number of
refactoring activities is desired, because of limitation of
time, resource or the like.

7.1 Illustrative example

Now, with an example, we further illustrate our formulation,
especially the constraint matrix Z. Consider a set of five
refactorings R = {r1, r2, r3, r4, r5} having constraints as
follows:

(i) r2↮r4 (i.e. r2 and r4 are mutually exclusive),
(ii) r4↛r1 (i.e. r1 cannot be applied after r4),
(iii) r5↛r3 (i.e. r3 cannot be applied after r5),
(iv) r3↔ r5 (i.e. r3 and r5 are mutually inclusive).

Other than the above-mentioned constraints, any two
refactorings kri, rjl [R are independent (i.e. ri⊥rj). The
constraint (iii) and constraint (iv) above jointly enforces that

if either of r3 and r5 is selected, the other refactoring must
also be selected and then r3 must also be scheduled before
r5. According to the constraint specifications, a valid
constraint matrix Z is shown in Table 3. The empty cells in
the table are filled up will zeros, which we omitted here for
the purpose of better readability.
The constraint (i) is enforced by (15). Here,

Z2,4 = Z4,2 = 1. If both r2 and r4 are selected then
X r1

+X r2
= 1+ 1 = 2, which violates the constraint in (15).

The constraint (ii) is imposed by (13) and (14). Here,
Z1,4 = +3 and Z4,1 = −3 and thus, Z1,4 − Z4,1 = 6,
which is higher than zero. Hence, (13) imposes that
Yr1

, Yr4
, and thus r1 preceedes r4 in the schedule (if both

are selected). Again, with respect to (14),
Z4,1 −Z1,4 = −6, which is less than zero and hence
Yr4

. Yr1
is imposed. Thus, (14), ensures that r4 follows r1

in the schedule (if both are selected).
The constraint (iii) is satisfied in the same way the

constraint (ii) is satisfied. Although in this case,
Z3,5 −Z5,3 = 4 and Z5,3 − Z3,4 = −4, the evaluation of
negativity works the same way as does for satisfying the
constraint (ii).
Finally, the mutual inclusion in constraint (iv) is enforced

by (16). According to our current example,
|Zi,j| = |Z j,i| = 2. Hence, (16) ensures that the remainder
of (X r3

+X r5
) divided by 2 must be equal to 0, which is

possible only if X r3
= X r5

= 1 or X r3
= X r5

= 0, that
means if both or neither of r3 and r5 are selected. Thus, the
constraint of mutual inclusion is satisfied.

8 Implementation

Based on the CSOP formulation of the scheduling problem,
we developed a CP model using optimisation programming
language (OPL) [Optimisation programming language
(OPL) is a relatively new modelling language for
combinatorial optimisation that simplifies the formulation
and solution of optimisation problems.]. For OPL
programming, we used the IBM ILOG CPLEX
Optimisation Studio 12.2 IDE under an academic license.
The IDE can be integrated with CPLEX Solver and CP
Optimiser, which are IBM’s optimisation engines for
solving optimisation problems modelled in LP and CP,
respectively.
CP combines techniques from AI and OR and it has been

shown to be effective in solving combinatorial optimisation
problems, especially in the area of scheduling and planning
[12, 13]. Over the past decade, a separate conference series
[International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial
Optimisation Problems (CPAIOR).] is held to host research
to integrate and combine AI and OR techniques in CP. CP
allows a more natural and flexible way to express objective
functions and constraints, where the functions and equations

Table 3 Constraint matrix Z representing the constraints
among the refactorings in R

r1 r2 r3 r4 r5

r1 – – – + 3 –
r2 – – – 1 –
r3 – – – – + 2
r4 − 3 1 – – –
r5 – – − 2 – –

www.ietdl.org

8 IET Softw., pp. 1–20
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0058

do not necessarily have to be strictly linear. Based on the
CSOP formulation of the scheduling problem, we also
developed a CP model of the problem and for solving it,
invoked the CP Optimiser from inside the IBM ILOG
CPLEX Optimisation Studio 12.2 IDE.
The CP technique works as follows. Given a set of

variables with their domains and a set of constraints on
those variables, first the domains of the variables are
identified. Then, based on the given constraints, the
domains of the concerned variables are modified. When a
variables domain is modified, the effects of this
modification are propagated through ‘constraint
propagation’ to any constraint involving that variable. For
each constraint, ‘domain reduction’ detects inconsistencies
among the domains of variables pertinent to that constraint
and removes inconsistent values. When a particular
variable’s domain becomes empty, it may be determined
that the constraint cannot be satisfied and backtracking may
occur undoing an earlier choice. CP repeatedly applies
constraint propagation and domain reduction algorithms to
make the domain of each variable as small as possible
while keeping the entire system consistent. To find the
optimal solution, the CP technique may explore, in the
worst case, all the feasible solutions and compare them
based on the objective function’s values.
For the purpose of evaluation, we also implemented LP,

GA and three variants of greedy algorithms for optimising
the automated scheduling of code clone refactorings.
Further details of about the LP, GA and greedy scheduling
techniques are presented in Section 9.4.

9 Empirical evaluation

To evaluate our refactoring scheduler and the effort model,
we conducted an empirical study on refactoring six software
systems developed (or under development) in our software
research lab [Software Research Lab, Department of
Computer Science, University of Saskatchewan, Canada,
http://www.cs.usask.ca/research/research_groups/selab]. The
subject systems and their sizes in terms of SLOC are
described in Table 4. All the subject systems shown in
Table 4 are written in Java and the sizes of the systems in
terms of SLOC exclude the comments and blank lines.
In particular, we designed the study to address the

following two research questions:

RQ1: Given a set of refactoring activities and a set of
constraints for them, can our refactoring scheduler
effectively compute conflict-free optimal scheduling of
refactorings? The effectiveness of the technique is measured

by quantitative comparison with other techniques such as
GA and LP. The conflict-freeness is verified by manually
checking for any constraint violation in the schedules
computed by the scheduler.
RQ2: Is the code clone refactoring effort model (described in
Section 4) useful in capturing and estimating the efforts
required for performing the refactorings? We address this
exploratory research questions by qualitative analysis of the
observation on developers during the study and the
developers’ feedback through post-study questionnaires.

Typically, it is difficult and risky for developers to refactor
a source code with which they are not familiar [9]. However,
it is the developers who are likely to know the best about the
critical parts of the projects that they develop and, thus, can
better assess both the efforts and effects of refactoring and
prudently assign priorities on certain refactoring candidates.
While the developers’ ability to assess the refactoring
efforts and effect for large and complex projects can still
remain unreliable, for smaller systems, their ability should
be fairly reliable. Therefore to evaluate our refactoring
scheduler, we chose small projects (Table 4) developed in
our own research lab. The use of in-house software systems
in the study not only facilitated manual verification for
correctness but also reduced the evaluation cost.
At the beginning of the study, we described to the

developers the objectives of the study and provided them
with our refactoring effort model, as well as an initial list of
refactoring operators that can be used for code clone
refactoring. Then, we explained a catalogue of common
software refactoring patterns [6] to them and showed them
how some of those can be applied for code clone
refactoring. We also described the QMOOD quality
attributes to them and, upon discussion, came to a
consensus to use the first six metrics (Table 2) in our study.
We all agreed that the rest of the metrics were too difficult
to estimate through subjective investigation, and no
automated tool exists to compute them. Hence, we ignored
the effect of code clone refactoring on those metrics. To
ignore them, the total gain in code/design quality (Section
5) was computed having values of changes in those metrics
set to zero. All the developers were graduate students
pursuing research in the area of software clones and thus
possess some knowledge and expertise in code clone analysis.

9.1 Clone detection

The first and foremost activity towards code clone refactoring
is the detection of code clones from the source code. We used
NiCad-2.6.3 [35] for detecting near-miss ‘block’ clones of at
least five lines in pretty-printed format. We used the
‘blind-rename’ option of NiCad with unique percentage of
items threshold (UPIT) set to 30%. The ‘blind-rename’
option instructs NiCad to ignore the differences in the
names of identifies/variables during comparison of the code
fragments. UPIT is a size-sensitive dissimilarity threshold
that sets NiCad’s sensitivity to differences in the code
fragments during the detection of near-miss code clones.
For example, if UPIT is set to 0% without the ‘renaming’
option, NiCad detects only exact clones (code clones that
have identical program text but may have variations in
layouts); if the UPIT is 30% having the ‘renaming’ option
set, NiCad detects two code fragments as clones if at least
70% of the normalised pretty-printed text lines are identical
(i.e. if they are at most 30% different). In the detection of
code clones, NiCad also ignores the comments in the

Table 4 Software systems subject to the empirical study

Subject
systems

SLOC Description

DomClone 2239 a domain information-based clone
analysis (prediction) tool

mutation
framework

2901 ongoing extended implementation of
the mutation framework proposed by

Roy and Cordy [16]
LIME [7] 3494 a source code comparison engine
SimCad [18] 3771 a clone detection tool
gCad [17, 33] 4563 a clone genealogy extractor
VisCad [34] 9323 a tool for analysis and visualisation of

code clones

www.ietdl.org

IET Softw., pp. 1–20 9
doi: 10.1049/iet-sen.2012.0058 & The Institution of Engineering and Technology 2013

source code and reports code clones clustered into
clone-groups based on their similarity.

9.2 Data acquisition

The results of clone detection from the six subject systems
were provided to the concerned developers, who then
further analysed the detected clones and rearranged the
groups when necessary, based on the suitability for
refactoring within context according to their understanding.
For the analysis, the developers used VisCad [34], a code
clone analysis and visualisation tool developed in our
research lab. For each of the systems, the number of
clone-groups and the number of distinct clone blocks
involved in those groups are presented in Table 5, which
the developers identified as the potential candidates for
refactoring.
Having the code clones organised into groups, the

developers carried out further qualitative analysis to
determine the strategies for refactoring each clone-group
(refactoring candidate). The identification of a refactoring
strategy, in particular, involved finding the appropriate
refactoring operations, their order of application and mutual
dependencies (if any). For each of the clone-groups chosen
for refactoring, the developers wrote down the sequence of
operations that they would perform to refactor that
clone-group. In determining the operations, the developers
were free to choose any operations beyond the list of
refactoring operators they were initially provided. The
right-most column of Table 5 presents the total number of
refactoring activities identified for each of the subject
systems. The developers also noted down any restrictions in
the ordering of the operations that must be followed to
successfully refactor a clone-group. Any such ordering
restrictions between clone-groups were recorded as well.
As an example, in Fig. 2, we present a clone-pair (shaded

blocks on the left) with partial context (surrounding code).
The example is an excerpt from the source code of VisCad
[The code is originally a part of diff-match-patch, an
open-source library (available at http://code.google.com/p/
google-diff-match-patch/) that VisCad uses internally. We
deliberately chose to present this simple example, so that

anyone can easily follow and verify.]. The developers chose
to refactor them by applying the ‘EM’ operation. The
developers recorded further fine grained operations and
required efforts in order, as shown in Table 6. As explained
by the developers, the effort for producing the method
signature was estimated by twice (for type and name) the
number of parameters to the method, plus three for method
name, return type and access modifier. Code modification
effort was estimated by the number of words (tokens)
added, deleted or modified.
As far as we are concerned, there is no existing tool for

calculating refactoring efforts and ours is the first
conceptual model for this purpose, we relied on the
developers’ opinions and wanted to see to what extent our
effort model was useful in estimating the effort of code
clone refactoring. The developers were instructed to
estimate efforts required for each refactoring activity that
they identified or for each of the clone-groups as a whole
they chose to refactor. Although they were provided the
refactoring effort model, they were free to apply their own
understanding and analytical evaluations for the efforts
estimation. As the developers estimated refactoring efforts,
at times, we observed and communicated with them to
understand how they were estimating the efforts for
refactoring. We used our observations and the developers’
feedback for a subjective evaluation of our effort model.
In the estimation of quality gains expected from the

refactorings of code clones, we again relied on the
developers’ judgements, which we feel is important in this
context. Using the QMOOD design property metrics
(Table 2), it was relatively easy for the developers to
estimate the quality gain expected from the refactoring of a
clone-group. For example, to estimate the change in ‘design
size’ or ‘complexity’, the developers did not compute the
total number of classes or methods (before and after the
refactoring) in the system, they just estimated the changes
in the number of classes or methods. For example, the
refactoring scenario presented in Fig. 2 causes the
complexity (number of methods) to increase by one and all
other QMOOD design property metrics under consideration
remain unaffected.
Next, the developers were instructed to assign non-zero

priorities between −5 (the lowest priority) and +5 (the
highest priority) to certain clone-groups that they
considered important in terms of the necessity and risks
involved in refactoring them. The priorities were set to +1
for clone-groups that were left unassigned by the
developers. For each of the systems, the developers
identified some intentional code clones in particular parts of
the systems. They considered some of them to be critical
and preferred not to take the risk of refactoring them.
Taking the developers’ opinions into consideration, we
could have excluded those from our study. Instead, we
assigned the lowest priority to them for examining how our
scheduler handles them in the scheduling process.
The developers’ estimation of refactoring efforts, effects

and the assignment of priorities are then used to compute
refactoring schedules in the evaluation of our code clone
refactoring scheduler.

9.3 Data normalisation

As described before, both the estimation of expected change
in code/design quality and the refactoring efforts, as well as
the priorities were sometimes set on refactoring of
clone-groups as a whole. Thus, in situations where the

Table 6 Example of operations and efforts for EM

Operations for EM Efforts

produce signature of the target method 15
copy clone fragment to the body of target method 1
perform necessary modifications in the body 5
replace clone fragments by calls to the extracted
method

2

total efforts 23

Table 5 Code clones in the systems under study

Subject systems Clone
groups

Clone
fragments

Total
refactorings

DomClone 21 56 77
mutation
framework

21 62 72

LIME 20 55 67
SimCad 16 42 64
gCad 28 91 93
VisCad 57 136 166

www.ietdl.org

10 IET Softw., pp. 1–20
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0058

developers made those estimations for refactoring an entire
clone-group, we equally distributed those estimations to all
the refactoring operations involved in refactoring that
particular clone-group.
Recall that the scheduling of code clone refactoring

activities can be optimised towards three dimensions:
minimising the refactoring efforts, maximising the
refactoring benefits and maximising the satisfaction of
priorities. However, the ranges of values obtained along
those dimensions were different. For example, the priorities
ranged between +5 and −5, whereas the values of total
refactoring efforts varied between 4.0 and 47. To prevent
our scheduler getting biased towards any of the individual
dimensions, we first normalised the values obtained for all
the three dimensions using the following procedure.
Let S = {v1, v2, v3, …, vn} be a set of values, then

norm(vi) =
vi

max{|v1|, |v2|, |v3|, . . . , |vn|}
, ∀vi [S

where, norm(vi) denotes the normalised value of vi. The set S
can be the set of values for all the refactorings along
any of the three dimensions. The normalisation actually
brings the magnitudes of all those values between 0 and 1
(i.e. 0 < |norm(vi)|≤ 1) and thus minimises the
inter-dimension influence of the magnitudes, whereas still
preserving the relative ratios of magnitudes within
dimensions. The emphasis on the efforts compared with the
qualities can be tweaked by setting higher or lower weights
as described in (8).
For priorities, before applying the aforementioned

normalisation, we carried out an additional normalisation
phase by adding +6 to each priority values. Thus, we
removed any priority ≤0. This removal was necessary as in
our objective function, the difference between quality and
effort is multiplied by priorities and we must ensure that the
multiplication negatives or multiplication by zero priority
do not take place.

9.4 Schedule generation

For each of the systems subject to our study, we enumerated
all the refactorings, accumulated them with the normalised
data and organised them in an appropriate OPL format to
feed to the schedulers for automated computation of the
refactoring schedules.
We evaluated our CP scheduling approach in four phases.

In the first phase, we compared our CP scheduler with three
variants of a greedy algorithm. The second phase compared
our CP approach with GA that was used by other
researchers [10, 11]. In the third phase, we compared the
CP scheduling with a manual approach. Finally, the fourth
phase compared the CP technique with the LP approach. In
our study, we used the default settings in the estimation of
total effort and quality gain, as described in Sections 4 and
5. For each of the subject systems, we first computed the
refactoring schedule using our CP approach and then
applied GA, greedy, manual and LP approaches (described
later) to compute schedules for the same set of refactorings.
The normalised data for each of the subject systems were

separately fed to each of the schedulers. All the schedulers
were executed on an Apple ‘MacBookPro5,5’ computer
with Intel Core 2 Duo (2.26 GHz) processor and 4 GB
primary memory (RAM). The CP, LP and greedy
schedulers operated inside the IBM ILOG CPLEX
Optimisation Studio 12.2 IDE running on Windows XP

operating system. All the IDE parameters were set to the
defaults. The GA scheduler operated on the same computer
but on a Mac OS 10.6.8 operating environment.

9.4.1 CP scheduling: For each of the subject systems, the
normalised data for each of the subject system were fed to our
scheduler as described in Sections 7 and 8. The scheduler,
upon obtaining the data in valid OPL format, applies
constraint propagation and domain reduction techniques
[13] to generate the optimal solution as instructed.

9.4.2 LP scheduling: LP is a mathematical programming
technique for solving optimisation problems. Over the past
few decades, LP has been widely used in the OR
community for dealing with optimisation problems. The
basic idea is to formulate the problem as a LP problem and
solve it using LP algorithms, such as the simplex method,
ellipsoid method and interior-point techniques [36]. An LP
problem is a mathematical formulation of an optimisation
problem defined in terms of an objective function and a set
of constraints. The objective function is a linear function of
variables whose values are unknown and the set of
constraints consists of linear equalities and linear
inequalities. The requirement of the linearity of the
objective function and the constraint equations as well as
the solution technique are the most obvious traits that make
LP distinct from CP. On the basis of the CSOP formulation
described in Section 7, we implemented an LP model of the
scheduling problem and invoked the CPLEX Solver for
solving the LP model. The CP implementation differs from
the CP implementation in two ways: first, in the LP
implementation, all the constraints were expressed in terms
of strictly linear equations, whereas in CP we used
CP-specific OPL statements, all of which were not
necessarily expressed in terms of linear equations. Second,
the CP and LP implementations included different
instructions to explicitly specify whether to invoke the CP
Solver or the LP Solver of the IBM ILOG CPEX
Optimisation Studio 12.2.
To compute scheduling of refactorings for each of the

subject systems, we invoked our LP scheduler, which
applied the ‘mixed integer linear programming (MILP)’
technique for computing the schedules. MILP is a kind of
LP, where the variables can hold integer or floating point
values only. Our LP scheduler, in consultation with the
CPLEX Solver, invokes the branch-and-cut algorithm,
which in turn applies the simplex algorithm to solve a
series of relaxed LP subproblems and gradually converge to
a strictly optimal solution. The simplex algorithm operates
by repeatedly applying linear algebraic techniques to solve
systems of linear equations. Further detail about the
branch-and-cut and simplex algorithms can be found
elsewhere [13, 36].

9.4.3 GA scheduling: GA is a kind of evolutionary
algorithm from the field of AI for solving optimisation
problems. In GA, a candidate solution is encoded as a
sequence of values, called a ‘chromosome’; a set of
candidate solutions is called a ‘population’. The algorithm
iterates over generations to evolve a population towards
better solutions through a number of operations such as
‘crossover’ and ‘mutation’. A ‘fitness function’ is used to
guide the evolution towards optimality. In our study, the
objective of the GA was set to select the best subset having
maximum M members from the set R of all potential
refactorings (recall from Section 7) for each of the subject
systems.

www.ietdl.org

IET Softw., pp. 1–20 11
doi: 10.1049/iet-sen.2012.0058 & The Institution of Engineering and Technology 2013

Encoding: For each system subject to our study, all the
candidate refactorings were enumerated with integers 1
through |R|. Having such an enumeration, a common
approach is to represent the problem as a binary Knapsack
[10] problem and encode a solution as a binary string
(Fig. 6) of length |R|. A bit in the string is 1, if and only if

the corresponding refactoring is selected in the schedule.
However, such an encoding scheme cannot deal with order
dependencies among the refactorings.
To capture the order dependencies, we devised a different

encoding scheme. A candidate solution was encoded in a
chromosome ζ as a sequence of M integers, having their
positions indexed with 1 through M, as shown in Fig. 7.
Having ζ[i], denoting the chosen refactoring at index i, the

encoding scheme is as follows.

† ζ[i] = 0 implies that no refactoring is selected at the index i.
† ζ[i] = rk implies that rk is the ith refactoring in the schedule
represented by ζ.
† ζ[i] < ζ[j] and ζ[i]≠ 0≠ ζ[j] means that the refactoring at
index i is scheduled before the refactoring at index j.
† A solution encoded by the chromosome ζ is ‘feasible’, if
any two chosen refactorings ζ[i] and ζ[j] satisfy all the
hard constraints. Otherwise, the solution is ‘infeasible’.
† A solution encoded by the chromosome ζ must not select
the same refactoring more than once. That is, ζ[i]≠ ζ[j]
must hold if ζ[i]≠ 0.

Crossover operation: The crossover operation, as shown in
the Fig. 8, randomly selects two chromosomes zp1 and zp2
as parents, an index k as the point of crossover, and creates
two offsprings zc1 and zc2 as follows

zc1 [i] = zp1 [i], for i [{1, 2, 3, . . . , k − 1}

zc1 [j] = zp2 [j], for j [{k, k + 1, k + 2, . . . , M}

zc2 [i] = zp2 [i], for i [{1, 2, 3, . . . , k − 1}

zc2 [j] = zp1 [j], for j [{k, k + 1, k + 2, . . . , M}

A configurable parameter ‘crossover rate’ defines what
proportion of the population of chromosomes in a certain
generation will participate in crossover operation to produce
offsprings. A crossover rate of 80% indicates that 80% of

Fig. 6 Traditional encoding of a solution in a binary string

Fig. 7 Our encoding of a solution in a chromosome

Fig. 9 Algorithm for creating population

Fig. 8 Crossover operation

www.ietdl.org

12 IET Softw., pp. 1–20
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0058

the population participate in crossover operation leaving 20%
survivors (unchanged chromosomes).
Mutation operation: The mutation operation on a

chromosome ζ selects a random index k and replaces the
refactoring ζ[k] by another randomly selected refactoring
r [R that is not already in the chromosome.
Mathematically, z[i] = r, ∀i [{1, 2, 3, . . . , M} holds
before the mutation.
Fitness function: The fitness function is defined by the

objective function described by (10) in Section 7. The
fitness function determines how good (fit) a solution is, as
represented by a chromosome.
Population generation: The GA begins with an initial

population and evolves from generation to generation. A
population of P distinct solutions is randomly created using
the procedure described in Algorithm 1 (see Fig. 9).
Genetic evolution: The algorithm evolves according to the

description in Algorithm 2 (see Fig. 10). The GA and its
evolution is characterised by a number of parameters. We
executed the GA several times with different combinations
of parameters. After tuning with different combinations, we
chose the combination that yielded the best performance (i.
e. highest fitness) of the GA. The chosen values for the
parameters, as presented in Table 7, are consistent with

general recommendations [37]. For each of the subject
systems, we executed the GA scheduler five times. At each
run, the scheduler executed for an evolution time of 10 000 s
(i.e. 2.78 h) and we kept the best (fittest) solution produced
in the five runs. This run-time is much higher than those
required for other scheduling approaches (e.g. CP, LP).

9.4.4 Greedy scheduling: Recall that we identified three
dimensions (i.e. effort, quality and priority) for optimising
scheduling of code clone refactorings. Thus, we
implemented (using OPL) three variants of a greedy
algorithm, each aiming to optimise along one of the
dimensions (i.e. optimisation criteria) disregarding the other
two. The prime objective of the ‘Greedye’ approach is to
compute schedules by minimising refactoring effort whereas
the ‘Greedyp’ and ‘Greedyq’ approaches aim to maximise
the satisfaction of priorities and quality gain, respectively.
The general greedy scheduling algorithm can be described
in terms of a few simple steps. First, all the refactorings are
sorted in the descending order of the optimisation criteria.
Then, refactorings are chosen one by one from the top of
the sorted list as long as the new candidate does not conflict
with any of the already chosen refactorings (see Fig. 10).
Intuitively, the minimum refactoring effort (i.e. zero effort)

can be achieved by scheduling no refactoring at all. Therefore,
in the application of the approach greedy towards refactoring
efforts, we must set a minimum number of refactorings that
must be scheduled. To keep the approach greedy towards
refactoring efforts comparable with our CP technique,
the minimum number of refactorings was set equal to the
number of refactorings scheduled by our CP scheduler.
The values along all the three dimensions obtained from
these scheduling approaches are presented in Table 8.

Fig. 10 Description of genetic algorithm

Table 7 Parameters for GA

Parameter Value

population size ≃ 1.0 × choromosome-length
mutation rate ≃ 1.0%
crossover rate ≃ 80%
elitism rate ≃ 30%

www.ietdl.org

IET Softw., pp. 1–20 13
doi: 10.1049/iet-sen.2012.0058 & The Institution of Engineering and Technology 2013

9.4.5 Manual scheduling: In the third phase of the
evaluation, our goal was set to schedule roughly 25% of the
total number of refactorings for each of the subject systems.
The developers of the concerned systems were instructed to
manually (or, in the way they would do it without help
from any automated scheduler) produce a schedule as best

as they could. Manually solving a CSOP such as scheduling
of code clone refactoring is a time-consuming and difficult
task, especially for medium to large problem instances.
Therefore we chose to schedule 25% of the total number of
refactorings to keep the problem instance small enough to
be handled by the manual approach. With the same goal

Table 8 Comparison of automated scheduling approaches

Subject systems Scheduling approaches Values at dimensions Quality effort P × (Q− E) Refac. chosen

Prior. Effort Quality

mutation framework Greedyp 20.06 21.94 18.53 −3.41 −68.40 40
Greedye 9.63 6.06 10.04 3.98 38.33 20
Greedyq 18.16 21.82 19.64 −2.18 −39.59 42
GAa 21.27 19.99 18.46 −1.53 −32.54 36
LP 9.34 7.86 11.48 3.62 33.81 20
CP 9.34 7.86 11.48 3.62 33.81 20

LIME Greedyp 22.42 21.12 19.93 −1.19 −26.68 47
Greedye 13.00 8.28 13.61 5.33 69.29 33
Greedyq 16.29 23.49 26.07 2.58 42.03 51

GA 10.17 15.71 15.21 −0.50 −5.09 33
LP 11.04 12.32 16.12 3.80 41.95 33
CP 11.04 12.32 16.12 3.80 41.95 33

SimCad Greedyp 27.42 25.23 16.82 −8.41 −230.60 52
Greedye 13.23 7.12 13.7 6.58 87.05 25
Greedyq 23.57 24.64 30.18 5.54 130.58 51
GAa 19.33 17.18 20.95 3.77 72.87 32
LP 12.78 8.99 18.96 9.97 127.42 25
CP 12.78 8.99 18.96 9.97 127.42 25

gCad Greedyp 19.65 21.62 20.00 −1.62 −31.83 41
Greedye 9.61 9.53 11.57 2.04 19.60 28
Greedyq 12.05 23.48 25.98 2.50 30.13 44
GAa 25.18 26.12 20.86 −5.26 −132.45 45
LP 6.70 15.19 17.99 2.80 18.73 28
CP 6.70 15.19 17.99 2.80 18.73 28

VisCad Greedyp 36.14 32.57 25.71 −6.86 −247.92 66
Greedye 16.12 18.63 13.20 −5.43 −87.53 40
Greedyq 29.02 33.81 34.32 0.51 14.80 72
GAa 45.03 42.57 38.09 −4.48 −201.73 83
LP 15.02 16.20 22.32 6.12 91.92 41
CP 15.33 15.78 21.90 6.12 93.82 40

DomClone Greedyp 37.64 28.06 23.77 −4.29 −161.48 62
Greedye 18.79 7.54 10.98 3.44 64.64 33
Greedyq 33.12 25.62 28.93 3.31 109.63 56
GAa 26.64 24.02 23.23 −0.79 −21.05 36
LP 19.14 13.33 23.35 10.02 191.78 35
CP 19.49 12.57 22.41 9.84 191.78 33

Here, Greedyp, approach greedy towards priority satisfaction; Greedye, approach greedy towards effort minimisation; Greedyq, approach
greedy towards quality gain
aThe computed schedule was infeasible, P × (Q−E) = Priotity × (Quality− Effort)

Fig. 11 Automated CP against manual scheduling

www.ietdl.org

14 IET Softw., pp. 1–20
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0058

(i.e. to schedule roughly 25% of all the refactorings), we
executed our CP scheduler.
The purpose of the manual approach was to confirm that

manually solving a CSOP can be difficult and the solution
obtained from manual scheduling can be worse than an
automated technique, such as CP. The objective was to
compare the produced schedules, given a set of constraints,
estimation of refactoring efforts, effects and priorities. It
was not necessary to actually carry out the those
refactorings in the subject systems.

9.5 Findings

The values along the three optimisation dimensions namely
the satisfaction of ‘priorities’

∑
r[R X rrr

()
, required ‘effort’∑

r[R X rE(gr)
()

, and expected gain in software ‘quality’∑
r[R X rQr

()
, obtained from our CP scheduling and

manual scheduling, are presented in Fig. 11. For an
effective schedule, the values for expected quality gain and
satisfaction of priorities are expected to be high whereas the
values for the efforts needed are expected to be low. Hence,
in the figure the heights of the bars above the baseline
(round-ended line) are expected to be high while the
heights of the bars below the baseline are expected to be as
low as possible.
Table 8 presents values along all the three optimisation

dimensions obtained by separately running all the
automated schedulers for each of the subject systems in our
study. Recall that the objective function as stated in (10)
optimises along these three dimensions. From our
observations during the study and the developers’ feedback,
as well as the results presented in Table 8 and Fig. 11, we
can answer the two research questions formulated before.
Answer to RQ1: Yes, given a set of refactoring activities

and constraints among them, our refactoring scheduler can
effectively compute a conflict-free optimal schedule of
refactorings.
As seen from Fig. 11, for four of the subject systems (i.e.

Mutation Framework, LIME, SimCad and DomClone), the
refactoring schedules generated by our CP approach are
consistently lower whereas the expected quality gain and
satisfaction of priorities are consistently higher compared
with those for the manually computed schedules. For gCad,
both the CP and manual approaches performed almost
equally well. In the case of VisCad, the schedule computed
by CP demands higher refactoring effort compared with the
manually computed schedule; however, the expected quality
gain and satisfaction of priorities for the CP schedule are
much higher than those for the schedule computed by
manual approach. Overall, it can be said that the CP
approach outperforms the manual approach.
For all the subject systems, as seen in Table 8, our CP

scheduler and the LP scheduler compute the optimal
refactoring schedule by efficiently balancing the three
optimisation dimensions (i.e. effort, quality and priority).
Again, the efforts are expected to be low whereas the
quality gain and priorities are expected to be as high as
possible. For some of the smaller systems (Mutation
Framework, LIME and gCad), the greedy approaches,
especially the approach greedy towards refactoring efforts,
closely competes with our CP approach. For Mutation
Framework and LIME, the approach greedy towards efforts
can be perceived (according to the third column from the
right) to have performed even slightly better than our CP
scheduler. Again, for all the systems, the priorities and
quality gain for the schedules computed by the approach

greedy towards priorities are consistently higher than those
for the schedules computed by CP approach. According to
the second column from the right, the approach greedy
towards priorities closely competes with our CP scheduler
for smaller systems such as LIME and SimCad, whereas for
gCad, the approach greedy towards priorities is found to
have performed better than CP. However, the required
efforts for those schedules (computed by the approach
greedy towards priorities) are also consistently much higher
(two or three times for most of the systems) than those for
the schedules computed by the CP approach. These much
lower efforts can make the CP scheduler preferable.
Other than those few cases discussed above, for all the

systems the CP and LP schedulers are found to have
significantly outperformed the other techniques. We also
found that the schedules generated by the CP approach
exhibited higher values of the objective-function (i.e. (10))
compared with those computed by the greedy approaches.
As the sizes of the systems in terms of SLOC and the
number of candidate refactorings increases, the CP and LP
schedulers outperform the greedy schedulers, which is
visible for the largest systems, VisCad and DomClone.
Overall, the CP and LP schedulers perform better than the
greedy schedulers or at least as good as those schedulers.
The risks of refactorings can be best estimated through

subjective analysis by the individuals who are familiar with
the underlying source code. Quantitative measurement of
such risks would be very difficult, if not impossible.
However, the risks of refactorings can be expected to be
positively proportional to the number of refactorings. In this
sense, the CP and LP schedulers also minimise the risks of
refactorings, as seen in the right-most column of Table 9,
the optimal schedule obtained from our scheduler always
includes the least number of refactorings, compared with
those from the GA and greedy schedulings.
As expected, our CP scheduler always outperformed

manual scheduling for all the six subject systems (Fig. 11).
The superiority in the optimality of the schedules (in terms
of efforts, quality gain and priorities) obtained from our CP
and LP schedulers, compared with manual scheduling,
gradually increased as the sizes of the systems and the
number of candidate refactorings increased. Our CP
scheduler took no >7 s in computing any of the refactoring
schedules presented in this paper, whereas, for manual

Table 9 Time and memory comparison of CP and LP
scheduling

Subject systems Scheduling
approaches

Resource
consumpsion

Time,
s

Memory

mutation
framework

LP 14.33 7.39 MB
CP 0.14 5.9 Mb

*LIME LP 185.69 6.45 MB
CP 0.20 5.2 Mb

*SimCad LP 54.09 12.40 MB
CP 0.97 9.4 Mb

*gCad LP 58.08 12.40 MB
CP 0.94 9.4 Mb

*VisCad LP 313.78 37.81 MB
CP 6.02 27.6 Mb

*DomClone LP 396.02 8.29 MB
CP 0.80 6.7 Mb

Here, MB =Megabyte; Mb =Megabit.

www.ietdl.org

IET Softw., pp. 1–20 15
doi: 10.1049/iet-sen.2012.0058 & The Institution of Engineering and Technology 2013

scheduling, the developers had to spend several hours
depending on the number of refactoring candidates and the
constraints involved. Recall that at each run the GA
scheduler executed for >2 h. Thus, in terms of run-time,
the CP approach outperforms the manual, greedy and GA
approaches.

9.5.1 Special note on GA: The performance of GA
scheduling is found to be worse than all other automated
scheduling techniques in our study. Within the 2.75 h
evolution time, GA was able to produce feasible solution for
only LIME. For all other systems, the results of GA
scheduling presented in the Table 9 correspond to infeasible
solutions. Given the refactoring scheduling problem instances
for those subject systems, during our study, we found that
the GA technique executed for hours and found solutions,
which were not ‘feasible’ solution. An explanation to this
observation can be the fact that optimisation problems with
many constrains can easily become ‘GA-hard’ [38, 39],
because crossover and mutation, the core operations of GA
are based on random selections, which do not guarantee for
constraint satisfaction or optimisation. Thus, traditional GA
may work for optimisation problems with a ‘few’ constraints,
but GA approaches do not seem to work well for CSOPs
[39]. Above all, GA approaches are by nature
time-consuming and memory intensive.

9.5.2 CP against LP: As can be seen in Table 9, the results
for both CP and LP are identical for all the subject systems,
except for VisCad and DomClone. This observation means
that, for each of those systems, both CP and LP produced
equally optimal solutions and, thus, in terms of the quality
(e.g. optimality) of the solutions both CP and LP performed
equally well.
For VisCad and DomClone, although the optimal

schedules computed by CP and LP are different, the values
of the objective functions were found to be equal: 8.364 for
VisCad and 6.03 for DomClone. There were more than one
equally optimal solutions, which allowed the CP and LP
schedulers to choose different solutions with the same
objective values. However, the CP scheduler picked the
solutions with the number of chosen refactoring less than
that of the LP scheduler. Thus, our CP scheduler mitigates
the risk of refactoring better than the LP scheduler.
However, the subtle difference may not be statistically
significant and a larger study can verify this phenomenon
with statistical confidence.
In Table 9, we present the time and memory consumption of

both the CP and LP schedulers in the computation of optimal
scheduling of clone refactorings for each of the subject
systems. As can be observed in the table, the time and
memory consumption of our CP scheduler is significantly
less than that of the LP scheduler. Therefore we can
conclude that the CP approach outperforms the LP approach
in terms of both run-time and memory consumption.
Answer to RQ2: Yes, the code clone refactoring effort

model (described in Section 4) is useful in capturing and
estimating the efforts required for performing the refactorings.

During the study, we observed the developers as they were
manually estimating the efforts required to refactor the code
clones at hand and assigning priorities to the candidate
clones. We encouraged them to ‘think aloud’ so that we
could capture information about what and how they were
thinking as well as what kind of difficulties they were
facing. As they completed their part, we collected feedback
from them using questionnaire with a fixed set of both close
and open-ended questions. Other than the questions about
the developers’ background, the questionnaire included the
following questions:

IQ1: How difficult was it to use the effort model in manually
estimating the required efforts for refactoring the clones?
IQ2: To what extent the effort model appeared useful to you in
the estimation of the refactoring efforts?
IQ3: Is there anything that you think is missing and should be
included in the effort model?
IQ4: Is there anything that you suggest to exclude from the
effort model?
IQ5: Any other comments about the effort model?

The questions IQ1 and IQ2 were Likert scale questions. The
possible answers to these questions and the developers’
feedbacks are presented in Table 10. The questions IQ3, IQ4

and IQ5 were open-ended questions. None of the developers
responded to IQ3 and IQ4, which hints the completeness of
our effort model, at least from those developers’
perspective. Only one of them responded to IQ5 with a
concise comment saying, ‘Tool (support) needed (for
calculation of such effort estimation)’.
Upon collection of the developers’ feedback through the

questionnaire, we further conducted a ‘focus group’
discussion session with all the developers to obtain their
opinions about usefulness and potential improvements of
our effort model. During the ‘focus group’ session, all the
developers indicated that the model was useful and it
guided them in the estimation of the efforts. One of the
developers further expressed that he would not have any
clue about how to estimate efforts without the help of the
effort model. All the developers proposed that an automated
tool, offering accurate calculations according to the model,
would be necessary to use the effort model more accurately.
Our observations of the developers (while they were
estimating the refactoring efforts) also support this
proposition. Some of the developers argued that the effort
model was useful for quantitative estimation of refactoring
efforts, but it alone could not capture the risks involved in
code clone refactorings. However, everyone agreed that the
effort model and the priority scheme in combination were
effective in capturing both the efforts and the risks.

9.6 Threats to validity

In this section, we point to the possible threats to the validity
of our work and how we addressed those threats to minimise
their effects. Recall that the objective of our empirical study
was 2-folds: first, to evaluate our refactoring effort model

Table 10 Developers feedback on the Likert scale questions

Questions Choice of answers and number of developers’ responses in brackets

IQ1 very easy (0) easy (0) somewhat difficult (0) difficult (2) very difficult (4)
IQ2 provided no assistance (0) somewhat useful (0) quite useful (1) very useful (3) it was a necessity (2)

www.ietdl.org

16 IET Softw., pp. 1–20
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0058

and, second, to evaluate our CP scheduler. Hence, we
organise the discussion of the threats along these two
perspectives.

9.6.1 Construct validity: Construct validity questions the
correctness of the design of the study in terms of whether the
data collection and operational measures are used correctly to
reflect the concepts studied. Ensuring construct validity is
typically challenging for studies involving human
developers [40].
In our study, we relied on the developers’ qualitative

evaluations in the estimation of both refactoring efforts and
effects. There is a possibility to question the individual
developer’s ability to correctly estimate those following our
effort model. This work is based on our initial
proof-of-concept proposal [41], where the reviewers
suggested to evaluate our refactoring effort model from the
developers’ perspective. We also understand that manual
scheduling of refactorings may be too difficult for large
systems but, for smaller systems, the developers can be
expected to do a fair job in estimating the efforts and risks
involved in refactoring the system. Hence, we intentionally
chose in-house systems and the concerned developers for
our study, which may appear as a bias. In practical settings,
it is often likely that refactorings, especially during the
development phase, will be performed by the concerned
developers who are familiar with the source code. Thus, our
choice of in-house systems and their developers rather
imitates the practical settings. Moreover, the subject
systems, being in-house and fairly small, allowed the
developers to estimate the refactoring efforts and effects
with a higher probability of accuracy compared with that if
we had used large open-source subject systems. Still, we
manually verified each developer’s refactoring solutions by
performing a detailed inspection of the code clones and
surrounding source code in the subject systems. We did not
rely only on observing the developers while they were
estimating the refactoring efforts. Through a questionnaire,
we also collected the developers’ feedback about the effort
model and further verified their feedback in a ‘focus group’
session. As such, we have a high confidence in the validity
of the evaluation.
Our refactoring scheduler (the primary contribution of this

paper) is independent of how the refactoring data are
obtained. Given a set of refactorings along with their
mutual constraints and priorities, as well as the estimation
of refactoring efforts and changes in code/design quality,
how effectively our scheduler can compute the optimal
schedule is the question for evaluating the scheduler.
Owing to the unavailability of any baseline approach or
benchmark data, it was not possible to evaluate our
scheduler in terms of precision (specificity) and recall
(sensitivity). Therefore we chose to compare our CP
scheduler with other approaches (i.e. greedy, GA, LP and
manual) in terms of optimisation values along the three
dimensions (i.e. effort, quality and priority satisfaction) as
well as in terms of run-time and memory consumption. We
manually investigated all the refactoring schedules obtained
from our CP scheduler and confirmed correctness (i.e.
feasiblity) in terms of constraint satisfaction. The choice of
in-house systems and their developers also facilitated
manual investigation of constraints satisfaction and
optimality of the refactoring schedules computed by our
scheduler.
Manual verification of optimality was difficult as it was

difficult to manually produce an optimal schedule, because

the code clone refactoring scheduling problem is NP-hard
[9–11]. However, we made efforts to challenge the
optimality of the produced solutions by attempting to
further increase the objective values by means of
pseudorandom replacement of refactorings in the computed
schedule. As we were not successful in that endeavour, we
became convinced that our CP scheduler indeed produced
optimal solution.
Given that the problem is well defined, the mathematical

foundation behind the LP technique guarantees to identify
the optimum solution and so a head-to-head comparison
between the schedules produced by the CP and LP
techniques enables an automated approach for mathematical
verification of the optimality of the schedules computed by
the CP scheduler. As the schedules obtained from the CP
scheduler were identical (or having same objective values)
to those computed by the LP scheduler, we can confidently
conclude that our CP scheduler indeed produced the
optimum refactoring schedules for each of the subject
systems in our study.

9.6.2 Internal validity: Internal validity is mostly
concerned with the ‘possible errors in our algorithm
implementations and measurement tools that could affect
outcomes’ [42].
Our refactoring effort model requires some fine grained

computations (e.g. token modification efforts in terms of
edit distances), which were not possible for the developers
to perform by hand. For this reason, during estimation of
the refactoring efforts, the developers used our effort
model as a guideline and followed that as much as it was
feasible. However, this use does not affect the
functionality of our refactoring scheduler. Rather, our
observations and the developers’ expressions towards the
need for realisation of the effort model in a software tool
further indicate the necessity and effectiveness of our
effort model.
In the estimation of the impact of refactoring on code/

design quality, we used the six of the QMOOD design
property metrics and ignored the rest. Moreover, the impact
of clone refactoring was estimated in accordance with (9).
The weighted sum of differences in (9) might have not been
able to capture the full benefits of the quality model. These
are also threats to the study. Although the choice of the
design property metrics does affect the estimation of
refactoring ‘effects’, it does not affect the estimation of
refactoring ‘efforts’ based on our effort model. Indeed, the
inclusion of all the metrics may affect the scheduling
approaches and produce different schedules, but we see no
reason why this may degrade the performance of our CP
scheduler compared with the others. Nevertheless, carrying
out a follow-up study including all the QMOOD design
property metrics can be worthwhile, which we plan to do in
the future.
In our study, we found that the GA approach did not

perform well and produced infeasible solutions. Our choice
and implementation of the mutation and crossover operators
may seem to be responsible. To minimise this threat, we
tweaked those operators in several ways and tuned the
parameters to the GA algorithm in separate runs. Then, we
chose the best combination of parameters to use in our
study. We believe that the reason to the poor performance
of the GA approach was that the large set of constraints
actually made the problem GA-hard [38, 39], as discussed
in Section 9.5.1.

www.ietdl.org

IET Softw., pp. 1–20 17
doi: 10.1049/iet-sen.2012.0058 & The Institution of Engineering and Technology 2013

9.6.3 External validity: External validity questions the
generalisability of the results of a study across different
experimental settings with larger population not considered
in the study.
The six subject systems used in our study are in-house and

small to medium in size. All the six respective developers are
graduate students; among them two are PhD students and the
rest are M.Sc. students at the end of their program. It is
arguable that the population is not large enough and subject
systems of the study are not representatives of industrial or
open-source systems while the developers may not
represent the industrial practitioners. Thus, our study may
be subject to threats to external validity. However, the
choice of in-house systems and their developers helped us
to minimise the threats to construct validity. One of the
participants of the study had 5 years of industry experience
and another had >2 years experience of working as a
developer in software industry. Thus, the group of
developers participated in our study represents a sample of
programmers with different levels of expertise. Therefore
we believe that our study achieves an acceptable level of
external validity. The threats to external validity can be
further minimised by increasing the number and sizes of the
subject systems, choosing both industrial and open-source
software for study, and involving developers with diverse
levels of expertise (i.e. beginner, intermediate and expert).

9.6.4 Reliability: The methodology of the study including
the procedure for data collection are documented in this
paper. The NiCad clone detector as well as the in-house
software systems used in our study are available online
[http://www.cs.usask.ca/faculty/croy/]. The data, the OPL
implementation of our CP and LP scheduler, as well as the
Java implementation of GA are also made available online
[http://usask.ca/minhaz.zibran/pages/projects.html] for the
interested parties. Therefore it should be possible to
replicate the study.

10 Related work

Much research has been conducted towards effective
identification and removal of different types of code smells
from the source code. Our work is focused on scheduling
of ‘code clone’ refactoring; we confine our discussion to
those work that deal with scheduling of refactoring this
particular code smell.
The work of Bouktif et al. [10], Lee et al. [11] and Liu

et al. [9] closely relate to ours. Bouktif et al. [10]
formulated the refactoring problem as a constrained
‘Knapsack problem’ and applied a GA to obtain an optimal
solution. However, they ignored the constraints that might
exist among the refactorings. Lee et al. [11] applied
‘ordering messy GA (OmeGA)’, whereas Liu et al. [9] used
a heuristic algorithm to schedule refactoring of code bad
smells in general. Both those studies took into account
conflicts and sequential dependencies among the
refactorings, but missed the constraints of mutual inclusion
and refactoring efforts. Our work differs from all those
work in two ways. First, for computing the refactoring
schedule, we applied a CP approach, which we have shown
to be better than theirs. Second, we took into account a
wide category of refactoring constraints and dimensions of
optimisations, some of which they ignored, as summarised
in Table 11. Although Bouktif et al. [10] proposed a small
effort model for code clone refactoring, their model was for
procedural code only, which considers only the method

call-chain and token modification efforts in terms of edit
distance. Our effort model is applicable not only to
procedural but also to OO source code, as it takes into
account diverse categories of efforts covering the constructs
of an OO system.
O’Keeffe and Ó Cinnéide [43] conducted an empirical

comparison of ‘simulated annealing’, GA and ‘multiple
ascent hill-climbing’ techniques in scheduling refactoring
activities in five software systems written in Java. However,
we used CP, which combines the strengths of both AI and
OR techniques [12] and thus led to our belief that CP
would be a better choice for solving such scheduling
problems. Indeed, from our empirical study, we found that
the CP approach outperformed both GA and LP techniques
in the scheduling of code clone refactorings. In our case,
GA did not perform well because the refactoring scheduling
problem that we have addressed is much stricter with a
wide range of hard constraints that might have made the
problem GA-hard [38, 39], as discussed in Section 9.5.1.
A number of methodologies [15, 23, 24, 44, 45] and

metric-based tools such as CCShaper [22] and Aries [21]
have been proposed for semi-automated extraction of code
clones as refactoring candidates. Several tools, such as
Libra [46] and CnP [47], have been developed for
providing support for simultaneous modification of code
clones. Our work is neither on finding potential clones for
refactoring nor on providing editing support to apply
refactorings. Rather, we focus on efficient scheduling of
those refactoring candidates, which is missing in those tools.

11 Conclusion and future work

In this paper, we presented our work towards conflict-aware
optimal scheduling of code clone refactorings. To estimate
the refactoring effort, we proposed an effort model for
refactoring code clones in OO and procedural source code.
Moreover, the risks of refactoring are captured in a priority
scheme. Considering a diverse category of refactoring
constraints, we modelled the scheduling of code clone
refactoring as a CSOP and implemented the model using
the CP technique. To the best of our knowledge, ours is the
first effort model for refactoring OO source code and our
CP approach is a technique that no one else in the past
reported to have applied in this context. Combining the
strengths from both AI and OR, the CP approach has been
shown to be effective in solving scheduling problems [12,
13]. Our CP scheduler computes the conflict-free schedule
making optimal balance among the three optimisation

Table 11 Comparison of code clone refactoring schedulers

Bouktif
et al. [10]

Lee et al.
[11]

Liu et al.
[9]

Our
scheduler

approach GA OmeGA heuristic CP
refactoring
effort

√ – – √

quality gain √ √ √ √
sequential
dependency

– √ √ √

mutual
exclusion

– √ √ √

mutual
inclusion

– – – √

priorities
satisfaction

– – – √

www.ietdl.org

18 IET Softw., pp. 1–20
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0058

dimensions: minimised refactoring effort, maximised quality
gain and satisfaction of higher priorities.
To evaluate our approach, we conducted an empirical study

with six in-house software systems and their developers.
Through comparison with greedy, GA, LP and manual
approaches, we showed that our CP scheduler outperformed
those techniques. Our refactoring effort model was also
found by the developers to be useful for estimating the
efforts required for code clone refactoring. Indeed, the
evaluation of the effort model is based on a pilot study with
a few developers, where the developers did not actually
apply the refactorings on the subject systems. In the future,
we plan to carry out a more structured, large-scale user
study where we will provide the developers with a tool
implementation of our effort model. Then, we will compare
the tool estimation with the actual efforts that the
developers must put for performing those refactorings by
hand. In the estimation of the effect of clone refactoring, we
will use the QMOOD quality model with its full strength.
We will also experiment with varying weight factors in our
parameterised model and observe the impact of those
variations on our approach. We will also compare our
CP-based approach with different variations of GA (e.g.
NSGA-II, Pareto-GA and OmeGA) and other evolutionary
algorithms such as Artificial Bee Colony, Ant Colony
Optimisation and Particle Swarm Optimisation. Our
immediate future plan also includes the evaluation of our
scheduler in a larger context involving both diversified
open-source and industrial software systems written in
different programming languages and, finally, the
integration of a smart scheduler with the code clone
management tool [7, 19] that we have been developing.

12 Acknowledgments

The authors acknowledge the contributions of Ripon Saha,
Muhammad Asaduzzaman, Sharif Uddin, Saidur Rahman,
Manishankar Mondal and Mohammad Khan for
participating in the study to empirically evaluate our code
clone refactoring scheduler and the effort model. This work
is supported in part by the Natural Science and Engineering
Research Council of Canada (NSERC) and the Walter
C. Sumner Memorial Foundation.

13 References

1 Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: ‘Refactoring:
improving the design of existing code’ (Addison Wesley Professional,
1999)

2 Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: ‘Do code
clones matter?’. Proc. 31st Int. Conf. Software Engineering (ICSE),
Vancouver, BC, Canada, May 2009, pp. 485–495

3 Kapser, C., Godfrey, M.W.: ‘Cloning considered harmful’ considered
harmful: patterns of cloning in software’, Empir. Softw. Eng., 2008,
13, (6), pp. 645–692

4 Zibran, M., Saha, R., Asaduzzaman, M., Roy, C.: ‘Analyzing and
forecasting near-miss clones in evolving software: an empirical study’.
Proc. 16th IEEE Int. Conf. Engineering of Complex Computer
Systems (ICECCS), Las Vegas, Nevada, USA, April 2011, pp. 295–304

5 Rieger, M., Ducasse, S., Lanza, M.: ‘Insights into system-wide code
duplication’. Proc. 11th IEEE Working Conf. Reverse Engineering
(WCRE), Delft, The Netherlands, November 2004, pp. 100–109

6 Fowler, M.: ‘Refactoring catalog’, http://refactoring.com/catalog/,
accessed March 2012

7 Zibran, M., Roy, C.: ‘Towards flexible code clone detection,
management, and refactoring in IDE’. Proc. Fifth Int. Workshop of
Software Clones (IWSC), Honolulu, Hawaii, USA, May 2011, pp.
75–76

8 Pérez, J., Crespo, Y., Hoffmann, B., Mens, T.: ‘A case study to evaluate
the suitability of graph transformation tools for program refactoring’,
Int. J. Softw. Tools Technol. Transf., 2010, 12, pp. 183–199

9 Liu, H., Li, G., Ma, Z., Shao, W.: ‘Conflict-aware schedule of software
refactorings’, IET Softw., 2008, 2, (5), pp. 446–460

10 Bouktif, S., Antoniol, G., Neteler, M., Merlo, E.: ‘A novel approach to
optimize clone refactoring activity’. Proc. Eighth Annual Conf. Genetic
and Evolutionary Computation (GECCO), Seattle, Washington, USA,
July 2006, pp. 1885–1892

11 Lee, S., Bae, G., Chae, H.S., Bae, D., Kwon, Y.R.: ‘Automated
scheduling for clone-based refactoring using a competent GA’, Softw.
Pract. Exper., 2010, 41, (5), pp. 521–550

12 Barták, R.: ‘Constraint programming: in pursuit of the holy grail’. Proc.
Week of Doctoral Students (WDS), Part IV (invited lecture), Prague,
Czech Republic, June 1999, pp. 555–564

13 Zibran, M.: ‘A multi-phase approach to university course timetabling’.
MSc thesis, Department of Mathematics and Computer Science,
University of Lethbridge, Canada, September 2007, pp. 1–125

14 Zibran, M., Roy, C.: ‘A constraint programming approach to
conflict-aware optimal scheduling of prioritized code clone
refactoring’. Proc. 11th IEEE Int. Working Conf. Source Code
Analysis and Manipulation (SCAM), Williamsburg, Virginia, USA,
September 2011, pp. 105–114

15 Kodhai, E., Vijayakumar, V., Balabaskaran, G., Stalin, T., Kanagaraj,
B.: ‘Method level detection and removal of code clones in C and Java
programs using refactoring’, Int. J. Comput. Commun. Inf. Syst.
(IJCCIS), 2010, 2, (1), pp. 93–95

16 Roy, C., Cordy, J.: ‘A mutation/injection-based automatic framework
for evaluating clone detection tools’. Proc. IEEE Int. Conf. Software
Testing, Verification, and Validation Workshops (ICSTW), Denver,
Colorado, USA, April 2009, pp. 157–166

17 Saha, R., Roy, C., Schneider, K.: ‘An automatic framework for
extracting and classifying near-miss clone genealogies’. Proc. 27th
IEEE Int. Conf. Software Maintenance (ICSM), Williamsburg,
Virginia, USA, September 2011, pp. 293–302

18 Uddin, S., Roy, C., Schneider, K., Hindle, A.: ‘On the effectiveness of
Simhash for detecting near-miss clones in large scale software systems’.
Proc. 18th IEEE Working Conf. Reverse Engineering (WCRE), Lero,
Limerick, Ireland, October 2011, pp. 13–22

19 Zibran, M., Roy, C.: ‘IDE-based real-time focused search for near-miss
clones’. Proc. 27th ACM Symp. Applied Computing (SAC), Riva del
Garda, Trento, Italy, March 2012, pp. 1235–1242

20 Advani, D., Hassoun, Y., Counsell, S.: ‘Understanding the complexity
of refactoring in software systems: a tool-based approach’, Int. J. Gen.
Syst., 2006, 35, (3), pp. 329–346

21 Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: ‘ARIES: refactoring
support tool code clone’. Proc. Third Workshop on Software Quality
(3-WoSQ), St. Louis, Missouri, USA, July 2005, pp. 1–4

22 Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: ‘Refactoring support
based on code clone analysis’. Product Focused Software Process
Improvement (PROFES), Springer, Berlin, Heidelberg Press, 2004,
LNCS, 3009, pp. 220–233

23 Schulze, S., Kuhlemann, M.: ‘Advanced analysis for code clone
removal’. Proc. GI-Workshop on Software Reengineering (WSR),
Bad-Honnef, Germany, May 2009, pp. 10–12

24 Yoshida, N., Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: ‘On
refactoring support based on code clone dependency relation’. Proc.
11th IEEE Int. Software Metrics Symp. (METRICS), Como, Italy,
September 2005, pp. 16–25

25 DeLine, R., Venolia, G., Rowan, K.: ‘Software development with code
maps’, ACM Commun., 2010, 53, (8), pp. 48–54

26 Mens, T., Taentzer, G., Runge, O.: ‘Analysing refactoring dependencies
using graph transformation’, J. Softw. Syst. Model., 2007, 6, (3), pp.
269–285

27 Sillito, J., Murphy, G., Volder, K.: ‘Asking and answering questions
during a programming change task’, IEEE Trans. Softw. Eng., 2008,
34, (4), pp. 434–451

28 Bansiya, J., Davis, C.: ‘A hierarchical model for object-oriented design
quality assessment’, IEEE Trans. Softw. Eng., 2002, 28, (1), pp. 4–17

29 Chidamber, S., Kemerer, C.: ‘A metric suite for object-oriented design’,
IEEE Trans. Softw. Eng., 1994, 25, (5), pp. 476–493

30 Sahraoui, H., Godin, R., Miceli, T.: ‘Can metrics help to bridge the gap
between the improvement of OO design quality and its automation?’
Proc. 16th IEEE Int. Conf. Software Maintenance (ICSM), San Jose,
California, USA, October 2000, pp. 154–162

31 Simon, F., Steinbrucker, F., Lewerentz, C.: ‘Metrics based refactoring’.
Proc. Fifth European Conf. Software Maintenance and Reengineering
(CSMR), Lisbon, Portugal, March 2001, pp. 30–38

32 Tahvildari, L., Kontogiannis, K.: ‘A metric-based approach to enhance
design quality through meta-pattern transformations’. Proc. Seventh

www.ietdl.org

IET Softw., pp. 1–20 19
doi: 10.1049/iet-sen.2012.0058 & The Institution of Engineering and Technology 2013

European Conf. Software Maintenance and Reengineering (CSMR),
Benevento, Italy, March 2003, pp. 183–192

33 Saha, R., Asaduzzaman, M., Zibran, M., Roy, C., Schneider, K.:
‘Evaluating code clone genealogies at release level: an empirical
study’. Proc. 10th IEEE Int. Working Conf. Source Code Analysis
and Manipulation (SCAM), Timisoara, Romania, September 2010, pp.
87–96

34 Asaduzzaman, M., Roy, C., Schneider, K.: ‘VisCad: flexible code clone
analysis support for NiCad’. Proc. Fifth Int. Workshop of Software
Clones (IWSC), Waikiki, Honolulu, Hawaii, USA, May 2011, pp.
77–78

35 Cordy, J., Roy, C.: ‘The NiCad clone detector’. Proc. 19th IEEE Int.
Conf. Program Comprehension (ICPC), tool demo, Kingston, Ontario,
Canada, June 2011, pp. 219–220

36 Winston, W.: ‘Operations research applications and algorithms’
(Duxbury Press, Belmont, CA, USA, 1994, 3rd edn.)

37 Obitko, M.: ‘Introduction to genetic algorithms’, A tutorial on genetic
algorithm, http://www.obitko.com/tutorials/genetic-algorithms/
recommendations.php, accessed March 2012

38 Davidor, Y.: ‘Epistasis variance: a viewpoint on GA-hardness’. Proc.
First Workshop on the Foundations of Genetic Algorithms (FOGA),
Bloomington, Indiana, USA, July 1990, pp. 23–35

39 Eiben, A., Raue, P., Ruttkay, Z.: ‘Solving constraint satisfaction
problems using genetic algorithms’. Proc. First IEEE Conf.
Evolutionary Computation, Orlando, Florida, USA, June 1994, pp.
542–547

40 Robillard, M., Coelho, W., Murphy, G.: ‘How effective developers
investigate source code: an exploratory study’, IEEE Trans. Softw.
Eng., 2004, 30, (12), pp. 889–903

41 Zibran, M., Roy, C.: ‘Conflict-aware optimal scheduling of code clone
refactoring: a constraint programming approach’. Proc. (Student Symp.
of the 19th IEEE Int. Conf. Program Comprehension (ICPC),
Kingston, Ontario, Canada, June 2011, pp. 266–269

42 Orso, A., Shi, N., Harrold, M.: ‘Scaling regression testing to large software
systems’, SIGSOFT Softw. Eng. Notes, 2004, 29, (6), pp. 241–251

43 O’Keeffe, M., Ó Cinnéide, M.: ‘Search-based refactoring: an empirical
study’, J. Softw. Maint. Evol. Res. Pract., 2008, 20, (1), pp. 345–364

44 Ducasse, S., Rieger, M., Golomingi, G.: ‘Tool support for refactoring
duplicated OO code’. Proc. Object-Oriented Technology (ECOOP’99
Workshop Reader), number 1743 in LNCS, Springer-Verlag Press,
1999, pp. 2–6

45 Schulze, S., Kuhlemann, M., Rosenmüller, M.: ‘Towards a refactoring
guideline using code clone classification’. Proc. Second Workshop on
Refactoring Tools (WRT), Nashville, Tennessee, USA, October 2008,
pp. 6:1–6:4

46 Higo, Y., Ueda, Y., Kusumoto, S., Inoue, K.: ‘Simultaneous
modification support based on code clone analysis’. Proc. 14th Asia
Pacific Software Engineering Conf. (APSEC), Nagoya, Aichi, Japan,
December 2007, pp. 262–269

47 Hou, D., Jablonski, P., Jacob, F.: ‘CnP: towards an environment for the
proactive management of copy-and-paste programming’. Proc. 17th
IEEE Int. Conf. Program Comprehension (ICPC), Vancouver, BC,
Canada, May 2009, pp. 238–242

www.ietdl.org

20 IET Softw., pp. 1–20
& The Institution of Engineering and Technology 2013 doi: 10.1049/iet-sen.2012.0058

	1 Introduction
	2 Background
	3 Clone refactoring
	4 Estimation of refactoring effort
	5 Prediction of refactoring effects
	6 Refactoring constraints
	7 Formulation of refactoring schedule
	8 Implementation
	9 Empirical evaluation
	10 Related work
	11 Conclusion and future work
	12 Acknowledgments
	13 References

