
Analysis and Visualization for Clone Refactoring
Minhaz F. Zibran

Department of Computer Science, University of New Orleans, LA, USA
Email: zibran@cs.uno.edu

Abstract—Clone analysis and visualization help in under-
standing characteristics of clones and indicate potential clones
as cost-effective candidates for refactoring. Many studies have
analyzed clones and their evolution while a number of techniques
have also been proposed for visualizing clones for aiding clone
analysis. However, clone analyses and visualizations with respect
to inheritance hierarchy and call graphs have remained ignored
so far. In this position paper, we argue that such analyses and
visualizations are necessary to help in dealing with clones for
refactoring.

I. INTRODUCTION

Duplicated code, or code clone is a well-known code smell.
Software systems typically have 9%-17% [21] duplicated code,
up to even 50% [14]. Due to the negative impacts (e.g., bug
creation, bug propagation, code instability, code inflation) of
code clones, it often becomes necessary to remove them by
careful refactoring.

Till date, clone refactoring is still highly dependent on
human efforts, which is error-prone and can be inefficient as
well. Effective refactoring of code clones requires a proper
understanding of the distributions and dependencies among
the program components where the clones reside in. Support
for performing clone analyses and visualization can help the
developers in choosing and performing appropriate refactor-
ings.

Until recently, many studies have explored the evolution,
distribution, and characteristics of code clones, which con-
tributed to the understanding of code clones, reasons for code
cloning, the nature of cloned code and their implications in the
development and maintenance of a software system. However,
the analyses of the distribution of code clones remained limited
within the dispersion of clones with respect to the file-system
hierarchy only. In this position paper, we argue that from the
perspective of clone refactoring, the support for analysis and
visualization of clones with respect to the inheritance hierarchy
and call graphs is a necessity, which is largely ignored so far.

II. STATE OF THE ART

Visualization support helps in clone analysis by facilitating
quick view over the characteristics of clones. Thus, many clone
visualization techniques have been proposed in the literature as
summarized in Table I. As shown in Table I, the existing clone
presentation techniques can be viewed to have two criteria [8].
The first criterion (middle column in Table I) refers to the level
of granularities (such as at the code segment level or file level
or subsystem level) at which the clone entities are visualized.

TABLE I
SUMMARY OF CLONE VISUALIZATION TECHNIQUES

Visualization Techniques Clone Clone
Granularity Relation

Tree Map [1], [14] F, S G
Scatter Plot [1], [14], [17] F, S, C P
System Model View [14] F, S P
Clone System Hierarchical Tree [7] F, S P, G
Hasse Diagram [9] F G
Clone Group Family Enumeration [14] F G
Duplication Web [14] F P
Dependency Graph [11] S P
Hierarchical Dependency Graph [1] S P
Clone Coupling and Cohesion [8] S Sc

Metric Graph [17] C G
Clone Cluster View [4] C G
Hyper-Linked Web Page [2], [10] C G
Clone Visualizer View [16] F, C G
Stacked Bar Chart [19] F, C G
Line Chart [19] F, C G
Edge Bundle View [5] F, S P
Here, F = file, S = sub-system or sub-directory, C = code segment

P = clone-pair, G = clone-group, Sc = super-clone

The second criterion (the rightmost column in Table I) refers
to the type of clone relationship addressed by the presentation,
that is, whether clones are showed at the clone-pair level or
grouped into clone-sets or super clones. A super clone is an
aggregated representation of multiple clone-groups residing in
the same source code entity (e.g., file).

Similar to the analyses of dispersion of clones, the visu-
alization of clones’ distributions also remained confined with
respect to the file-system hierarchy, as can be inferred from
Table I. Although existing clone analyses and visualizations
have considered different granularities and clone relationships,
the analysis and visualization of the distributions of clones
with respect to inheritance hierarchy and call delegations have
remained ignored.

III. ANALYSIS AND VISUALIZATION FOR REFACTORING

Among many general refactoring patterns [3], Extract
Method, Pull-up Method, and Extract Class are the most
prominent patterns that can be applied for clone refactor-
ing [12], [13], [20], while in the literature, some variations
(e.g., Extract Superclass, Form Template Method, Extract
Utility Class, Move Method) of these refactoring patterns are
also found to have been considered for the same.

Note that the clone refactoring patterns are formulated
on the basis of program structure in terms of inheritance

978-1-4673-6914-5/15 c© 2015 IEEE IWSC 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

47

SuperClass1

SubClass1

method1()

SubClass2

method2()

(a) Pull-up method: choice of superclass
clone methods method1 of SubClass1 and method2 of SubClass2

can be pulled up in one of their common super-classes, SuperClass1 … SuperClassn

SuperClassn

SuperClass1

method()

Subclass1 SubClass2

SuperClassn

(b) Mutual inclusion: chained method calls
Pull-up of clone methods method_A1 and method_B1 also needs pull-up of clone methods

method_A2 and method_B2

SuperClassk

method_1

method_2

calls

ClassA ClassBPull-up
methods

Extract
superclass

ClassA

method_A1

method_A2

calls

clone

ClassB

method_B1

method_B2

calls
clone

Pull-up
method

Fig. 1. Examples of Clone Refactoring

hierarchy and method call delegations. For determining the
appropriate refactoring strategies, the developer must invest
a significant effort in understanding the context, constraints
(e.g., dependencies), and locations of the clones within the
inheritance hierarchy and method call graphs [20].

Figure 1 presents simple examples of clone refactoring
within the context of inheritance hierarchy and method call
graph. The example in Figure 1(a) shows that the developer
must choose the appropriate superclass in the inheritance
hierarchy to apply Pull-up Method refactoring. The example
in Figure 1(b) demonstrates a context where the developer
needs to identify and deal with the dependencies among
the clones (mutual inclusion [20] in this case, aka, chained
clones [18]). For demonstrating the ideas, the figure presents
simple instances while more complicated scenarios appear in
the source code of real-world software systems. Thus, support
for interactive visualization and analysis of such scenarios
of clones’ dispersion and dependencies can offer immense
help in clone refactoring. In addition, such visualizations can
also help in quick exposure of program design flaws such as
lack of cohesion, improper object-orientation, and issues with
modularity.

IV. CONCLUSION

Existing visualization techniques can be fortified for clone
visualization in the inheritance hierarchy and call graphs.
For example, considering inheritance as a subset relationship,
interactive TreeMap [1], [14] can be used for visualizing

clones in inheritance hierarchy instead of traditional TreeMap
view of clones in the file-system hierarchy. Customization of
hierararchical dependency graph [1] or simply dependency
graph [11] can also be suitable alternatives for visualizing
clones in call graphs or inheritance hierarchy.

As much as 80% of software costs are spent on mainte-
nance [6]. During a maintenance task, most of the developer’s
effort is invested in understanding the underlying program
structure and source code, while as high as 62% of such
effort is typically wasted in investigating irrelevant parts (e.g.,
source files) of the program [15]. With appropriate metaphors,
actionable support for clone analysis and visualization with
respect to the inheritance hierarchy and call graphs can help
in making better design decisions during clone refactoring and
thus can minimize clone refactoring cost, which in turn can
reduce the software maintenance cost as a whole.

REFERENCES

[1] M. Asaduzzaman, C. Roy, and K. Schneider. VisCad: flexible code clone
analysis support for NiCad. In IWSC, pages 77–78, 2011.

[2] J. Cordy, T. Dean, and N. Synytskyy. Practical language-independent
detection of near-miss clones. In CASCON, pages 1–12, 2004.

[3] M. Fowler, K. Beck, J.Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison Wesley Professional,
1999.

[4] Y. Fukushima, R. Kula, S. Kawaguchi, K. Fushida, M. Nagura, and
H. Iida. Code clone graph metrics for detecting diffused code clones.
In APSEC, pages 373–380, 2009.

[5] B. Hauptmann, V. Bauer, and M. Junker. Using edge bundle views for
clone visualization. In IWSC, pages 86–87, 2012.

[6] Research Triangle Institute. The economic impacts of inadequate
infrastructure of software testing. RTI Project Report 7007.011, National
Institute of Standards and Technology, 2002.

[7] Z. Jiang and A. Hassan. A framework for studying clones in large
software systems. In SCAM, pages 203–212, 2007.

[8] Z. Jiang, A. Hassan, and R. Holt. Visualizing clone cohesion and
coupling. In APSEC, pages 467–476, 2006.

[9] J. Johnson. Visualizing textual redundancy in legacy source. In
CASCON, pages 32–41, 1994.

[10] J. Johnson. Navigating the textual redundancy web in legacy source. In
CASCON, pages 16–25, 1996.

[11] C. Kapser and M. Godfrey. Improved tool support for the investigation
of duplication in software. In ICSM, pages 305–314, 2005.

[12] S. Lee, G. Bae, H. Chae, D. Bae, and Y. Kwon. Automated scheduling
for clone-based refactoring using a competent GA. Software - Practice
and Experience, 41(5):521–550, 2010.

[13] H. Liu, G. Li, Z. Ma, , and W. Shao. Conflict-aware schedule of software
refactorings. IET Software, 2(5):446–460, 2008.

[14] M. Rieger, S. Ducasse, and M. Lanza. Insights into system-wide code
duplication. In WCRE, pages 100–109, 2004.

[15] Z. Soh, F. Khomh, Y. Gueheneuc, and G. Antoniol. Towards understand-
ing how developers spend their effort during maintenance activities. In
WCRE, pages 152–161, 2013.

[16] R. Tairas, J. Gray, and I. Baxter. Visualizing clone detection results. In
ASE, pages 549–550, 2007.

[17] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Maintenance
support environment based on code clone analysis. In METRICS, pages
67–76, 2002.

[18] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. On
refactoring support based on code clone dependency relation. In
METRICS, pages 16–25, 2005.

[19] Y. Zhang, H. Basit, S. Jarzabek, D Anh, and M. Low. Query-based
filtering and graphical view generation for clone analysis. In ICSM,
pages 376–385, 2008.

[20] M. Zibran and C. Roy. Conflict-aware optimal scheduling of code clone
refactoring. IET Software, 7(3):167–186, 2013.

[21] M. Zibran, R. Saha, M. Asaduzzaman, and C. Roy. Analyzing and
forecasting near-miss clones in evolving software: An empirical study.
In ICECCS, pages 295–304, 2011.

48

