
The Vision of Software Clone Management:
Past, Present, and Future (Keynote Paper)

Chanchal K. Roy Minhaz F. Zibran Rainer Koschke†
University of Saskatchewan, Canada †University of Bremen, Germany

{chanchal.roy, minhaz.zibran}@usask.ca, koschke@informatik.uni-bremen.de

Abstract—Duplicated code or code clones are a kind of code
smell that have both positive and negative impacts on the
development and maintenance of software systems. Software
clone research in the past mostly focused on the detection
and analysis of code clones, while research in recent years
extends to the whole spectrum of clone management. In the last
decade, three surveys appeared in the literature, which cover
the detection, analysis, and evolutionary characteristics of code
clones. This paper presents a comprehensive survey on the state
of the art in clone management, with in-depth investigation
of clone management activities (e.g., tracing, refactoring, cost-
benefit analysis) beyond the detection and analysis. This is
the first survey on clone management, where we point to the
achievements so far, and reveal avenues for further research
necessary towards an integrated clone management system. We
believe that we have done a good job in surveying the area of
clone management and that this work may serve as a roadmap
for future research in the area

Index Terms—Code Clones, Clone Analysis, Clone Manage-
ment, Future Research Directions

I. INTRODUCTION AND MOTIVATION

Copying existing code and pasting it in somewhere else
followed by minor or major edits is a common practice
that developers adopt to increase productivity. Such a reuse
mechanism typically results in duplicate or very similar code
fragments residing in the code base. Those duplicate or near-
duplicate code segments are commonly known as code clones.
There are many reasons why developers intentionally perform
such code cloning. Obvious reasons include reuse of exist-
ing implementations without “re-inventing the wheel". More
comprehensive discussions on the reasons for code cloning
can be found elsewhere [104]. Code clones may also appear
in the code base without the awareness of the developers.
Such unintentional/accidental clones may be introduced, for
example, due to the use of certain design patterns, use of
certain APIs to accomplish similar programming tasks, or
coding conventions imposed by the organization.

The reuse mechanism by code cloning offers some benefits.
For instance, cloning of existing code that is already known to
be flawless, might save the developers from probable mistakes
they might have made if they had to implement the same from
scratch. It also saves time and effort in devising the logic
and typing the corresponding textual code. Code cloning may
also help in decoupling classes or components and facilitate
independent evolution of similar feature implementations.

On the other end of the spectrum, code clones may also
be detrimental in many cases. Obviously, redundant code may

inflate the code base and may increase resource requirements.
This may be crucial for embedded systems and systems such
as hand held devices, telecommunication switches, and small
sensor systems. Moreover, cloning a code snippet that contains
any unknown fault may result in propagation of that fault
to all copies of the faulty fragment. From the maintenance
perspective, a change in one code segment may necessitate
consistent changes in all clones of that fragment. Any incon-
sistency may introduce bugs or vulnerabilities in the system.
Fowler et al. [35] recognize code clones as a serious kind of
code smell.

However, during the software development process, duplica-
tion cannot be avoided at times. For example, duplication may
be enforced by the limitation of the programming language’s
necessary mechanism to implement an efficient generic solu-
tion of a problem at hand. Code generators may also generate
duplicated code that the developers may have to modify.

Although controversial, previous research reports empirical
evidences that a significant portion (generally 9%-17% [145])
of a typical software system consists of cloned code, and the
proportion of code clones in the code base may be as low
as 5% [104] and as high as even 50% [103]. Indeed, due to
the negative impact of code clones in the maintenance effort,
one might want to remove code clones by active refactoring,
wherever feasible. However, in reality, aggressive refactoring
of code clones appears not to be a very good idea [22], and not
all clones are really removable through refactoring. Due to the
dual role of code clones in the development and maintenance
of software systems, as well as the pragmatic difficulty in
avoiding or removing those, researchers and practitioners have
agreed that code clones should be detected and managed
efficiently [95, 143].

Since the emergence of software clones as a research area in
early 1990s, significant contributions over years made the field
grow and become quite a mature area of research. Over the
entire course of software clone research there have been only
two notable general surveys on clones. Koschke [80], in 2007,
presented a brief summary of the important findings about
different aspects of software clones including cause-effect of
cloning, clone avoidance, detection, and evolution along with a
set of open questions. In the same year, Roy and Cordy [104]
also published another survey containing a thorough review
on those same areas with specific focus on clone detection
tools and techniques. A few recent surveys either focus on
detection [102, 107] or evolution of clones [99]. In this vision



paper, we provide an extensive survey on code clone research
with strong emphasis on clone management and point readers
to future research directions.

This paper is organized as follows. In Section II, we
present a systematic review on a repository of 353 publications
appeared over 20 years. The review draws a “birds-eye"
view on the overall contributions and growth along different
dimensions of software clone research. This survey is the
outcome of careful investigation of literature beyond the said
repository (described in Section II), and through analysis in the
light of our experience. Section III introduces different aspects
of clone management activities starting with the definition and
types of clones. While in Section IV, we list different stand-
alone clone detection techniques, we discuss the IDE-based
clone detectors in Section V. We then talk about clone doc-
umentation in Section VI and that of tracking over evolution
in Section VII. We discuss clone evolution studies including
visualization of clone evolution in Section VIII. Then, in
Section IX, we discuss clone annotation. Section X presents
the techniques for clone removal or clone based reengineering.
In Section XI, we describe the analyses for the identification
of potential clones as candidates for refactoring/reengineering
including the visualization of clones, cost-benefit analysis
and scheduling of clones for refactoring. In section XII, we
briefly summarize the root causes for clones followed by clone
management strategies in Section XIII. In Section XIV, we
briefly describe the design space for a clone management
system. Our view on the challenges for industrial adoption
of clone management is presented in Section XV. Finally,
Section XVI concludes the paper with a rough summary of
the state of the art along with future research directions.

II. A SYSTEMATIC REVIEW OF CLONE LITERATURE

There has been more than a decade of research in the field
of software clones. To understand the growth and trends in
the different dimensions of clone research, we carried out a
quantitative review on related publications. Robert Tiras has
been maintaining a repository [120] of scholarly articles that
make significant contributions in the area. Until today, the
corpus consists of 353 scholarly articles published between
1994 and 2013 in different refereed venues including Ph.D.,
M.Sc., and Diploma theses. The repository organizes the
publications by categorizing them based on their contributions
in four major sub-areas of clone research. The categories are
as follows:
Detection Publications in this category address techniques

and tools for the detection of software clones.
Analysis This category contains publications that perform

analysis on the various traits of software clones, their
etiology, existence, effects in software systems, as well
as investigation of clone reengineering opportunities and
implications. A majority of such publications report find-
ings from qualitative or quantitative empirical studies.

Management Publications in this category address the issues,
techniques and tools for the management of code clones
beyond detection.

Tool Evaluation This category comprises the publications
that contribute to the quantitative or qualitative evaluation
of the techniques and tools for clone detection.

Figure 1 plots the number of distinct authors contributing
to clone research in the years from 1994 through 2013. As the
figure indicates, the clone research community has experienced
a significant growth over the recent years. In Figure 2, we
present the number of publications appear every year con-
tributing to each of the four sub-areas of clone research. As
seen in the figure, early work on software clone research was
dominated by the research on clone detection with some work
on analysis. In the recent years, the work on clone analysis and
detection has grown significantly while clone management has
emerged and growing as a significant research topic. Despite
the fast growth of the clone research community, the work
purely on clone management received relatively less attention
compared to analysis and detection, which can be more clearly
perceived from Figure 3. This, in combination with the realized
importance of research in clone management, points to the
further need and potential for research in this sub-area.

Fig. 3. Proportion of publications in each category over the period 1994–2013

It can also be noticed from both Figure 2 and Figure 3
that over the entire span (1994–2013) of software clone
research a very few studies focused on the evaluation of clone
detection techniques or tools, although more than 40 different
clone detection tools have been produced realizing a wide
variety of techniques [107]. Indeed, the detection of clones
is a fundamental topic for software clone research, and the
effectiveness of clone management largely depends on clone
detection.

III. CLONE MANAGEMENT

“Clone management summarizes all process activities which
are targeted at detecting, avoiding or removing clones" [37].
Thus, clone management encompasses a wide range of cate-
gories of activities including clone detection, tracking of clone
evolution, and refactoring of code clones. As support for these
operations, the documentation and analysis of code clones can
be regarded as parts of clone management. Moreover, clone
visualization may also be an effective aid to clone analysis,
and thus to clone management.



Fig. 1. Yearly number of distinct authors contributing to clone research

Fig. 2. Categories of publications on software clone research in different years

A. Definition of Code Clone

Though duplicate or similar code fragments are roughly
known to be code clones, the definition of clone has remained
more or less vague over the last decade. The vagueness is
reflected in the definition given by Ira Baxter, “Clones are
segments of code that are similar according to some definition
of similarity" [12]. Despite ongoing debates in the research
community, there is no consensus on a precise definition yet.
Currently, a researcher’s definition of similarity is typically
constrained by the program representation and detection mech-
anism of his or her particular clone detector and, hence, varies
from tool to tool and also from parameter settings controlling
a tool. The least common denominator widely accepted today
is the following taxonomy, which was created in the context
of a study on comparing clone detectors [15]:

Type-1 Clone Identical code fragments except for variations
in white-spaces and comments are Type-1 clones.

Type-2 Clone Structurally/syntactically identical fragments
except for variations in the names of identifiers, literals,
types, layout and comments are called Type-2 clones.

Type-3 Clone Code fragments that exhibit similarity as of
Type-2 clones and also allow further differences such
as additions, deletions or modifications of statements are
known as Type-3 clones.

Type-4 Clone Code fragments that exhibit identical func-
tional behaviour but are implemented through very dif-
ferent syntactic structures are known as Type-4 clones.

Type-2 and type-3 clones are often collectively called near-
miss clones. There have been alternative, more elaborated
taxonomies proposed by Mayrand et al. [89], Balazinska et
al. [7], and Kontogiannis [79], but they are not as widely used
as the simple categorization by Bellon et al. [15].

A common definition is needed when empirical results are to
be compared, for instance, on effects of clones or on accuracy
of clone detectors. The difficulty to reach a consensus on a
suitable definition, however, inevitably depends also on the
purpose of the clone detection. A definition of similarity will
include the “value” of a clone for the given task (e.g., bug
fixing or refactoring). We do not foresee the advent of a unified
definition, we rather expect that task-specific taxonomies of
code similarity will emerge in the future and studies will
further differentiate contexts and purposes of clones.

Ongoing research also attempts to deal with clones in
software artifacts other than the source code [62], such
as clones in higher level code structure [9], clones in the
models of formal model based development [29], in UML
domain models [117], UML sequence diagrams [86], in the
graph based Matlab/Simulink models [100], duplication in re-
quirement specification documents [62, 65], predicting clones



among domain entities [101], and even in Spreadsheets [46].
Definitions of clones must capture clones in all types of
artifacts, not just source code. However, this paper focuses
on the management of clones in the source code only.

B. Clone Management Activities

To manage clones, first they have to be identified. The result
of clone detection forms clone documentation that records
the location of code segments and their clone relationship.
If the code base changes due to ongoing development, the
changes and locations of the clones need to be tracked, and
the documentation needs to be updated accordingly. The clone
documentation may be analyzed to determine justification of
clones or to find potential clones for removal. Visualization
techniques can aid such analysis. Clones that are found to have
justified reason to exist may be further documented and/or
annotated. The candidates for refactoring can be scheduled
for modification and/or removal. Upon the application of
refactoring operations, a follow up verification may examine if
the refactoring caused any change in program behaviour, and
in accordance, may initiate roll-back and re-refactoring. Upon
completion of refactoring the clone documentation needs to
be updated for consistency.

The workflow for a typical clone management system may
compose all these activities according to as summarized in
Figure 4. In the following sections, we describe the state of
the art in support for each of the clone management activities.

IV. CLONE DETECTION

Over more than a decade of code clone research a number
of techniques have been devised for the detection of code
clones and many clone detection tools have been developed.
In this section, we provide a brief summary of different
clone detection techniques. More detailed descriptions of those
techniques can be found in the corresponding papers and
elsewhere [104, 107].

Tracking Clipboard Operations: This technique of clone
detection is based on the assumption that programmers’ copy-
paste activities are the primary reason for the creation of code
clones. So, the technique [28, 51, 131] simply tracks clipboard
activities in the editor (inside IDEs such as Eclipse) when
a programmer copies a code segment and reuses by pasting
it. The copied and the pasted code segments are recorded as
clone-pairs.

Metrics Comparison: Metrics based techniques [83, 89]
are usually used to detect function clones. The techniques
are based on the assumption that similar code fragments
should yield very similar values for different software metrics
(e.g., cyclomatic complexity, fan-in, fan-out). Typically, for
the code segments a set of metrics are gathered into vectors.
The differences in the vectors are calculated, where close
vectors (e.g., measured by Euclidean distance) indicate that
their corresponding code fragments are clones.

Texual Comparison: Text based techniques [32, 59] com-
pare program text, typically line by line, with or without

normalizing the text by renaming the identifiers, filtering out
the comments and differences in the layout.

Token Based Comparison: In token based techniques
[5, 33], the entire program is transformed into a stream of
tokens (i.e., individual units/words of meaning) through lexical
analysis. Then the token stream is scanned to find similar token
subsequences, and the original code portions corresponding to
those subsequences are reported as clones.

Syntax Comparison: Syntax comparison based techniques
[12, 56, 95] are developed on the fact that similar code
segments should also have similar syntactic structure. Thus,
the program is parsed to produce a syntax tree, where similar
subtrees indicate that their corresponding code segments are
clones.

PDG Based Comparison: For a given program, a set of
PDGs (Program Dependency Graphs) are produced based on
the data and control dependencies among the statements of the
program. The code segments corresponding to the isomorphic
subgraphs are identified and reported as clones [47, 49, 78].

Hash Based Comparison: Recently, hash based techniques
are getting attention for fast and scalable detection of near-
miss clones where hash values are generated from source code
and processed further for finding clones [116, 126].

Comparison of Low Level Form of Code: Instead of
analyzing and comparing textual source code, the techniques
analyze the lower level code (e.g., assembly code, Java Byte-
code or .Net intermediate language) as obtained from the
transformation by the compiler [2, 27, 74].

Other Techniques: Besides the aforementioned promi-
nent techniques for clone detection, other techniques, such
as formal methods [113], and combination of distinct tech-
niques [105] were also approached. Tracing of abstract mem-
ory states during the execution of the program was also
attempted to detect semantic clones [76].

As listed above there have been a great many state of the
art clone detectors available. However, still little is known
about the useful of the detected clones by different clone
detectors. Furthermore, evaluation of the clone detectors is
still an open challenge [104, 107] as we do not have reliable
benchmarks except the tool comparison experiment of Bellon
et al. [15] and the mutation based framework of Roy, Cordy
and Svajlenko [106, 119]. The parameter settings of the clone
detectors is another threat as shown by Wang et al. [129] as
confounding configuration choice problem and conducted an
extensive study considering six clone detectors to ameliorate
the effects of the problem. Not to mention the issue of big data
clone detection is a growing challenge for clone management
and for many other related applications [118].

V. INTEGRATED CLONE DETECTION

There are many clone detection tools out there, each has
its own strengths and weaknesses. However, for proactive
clone management, the support for clone detection should be
integrated with the development process. Therefore, we focus
on those tools that integrate clone detection with an IDE or a
version control system.



Detection Documentation Tracking

Visualization

Analysis Recommendation

Refactoring 
Scheduling

Refactoring 
Operation

Refactoring 
Verification

AnnotationPrevention

Fig. 4. Clone management workflow

Juergens et al. developed CloneDetective [64], an open
source framework to facilitate implementation of customized
clone detectors. The framework itself is built on the infras-
tructure of ConQAT1, an integrated toolkit for software quality
assessment. Currently, CloneDetective is an integral part
of ConQAT, which applies a suffix-tree-based technique to
detect Type-1, Type-2, and Type-3 clones. However, beyond
the detection of clones and visualization of the clone detection
result, they offer no further support for clone management.
SimScan2, which is a parser-based tool available as plugin

to Eclipse, IDEA, or JBuilder, can detect Type-1, Type-2, and
possibly a subset of Type-3 clones. The potential of SimScan
is also limited up to the detection code clones, not beyond that.

Giesecke [37] proposed a generic model for describing
clones. The model allowed separation of concerns among the
detection, description, and management of code clones. The
objective was to ease the implementation of tools to support
such activities. Based on the proposed model, they imple-
mented DupMan, a framework [38] integrated with the Eclipse
platform, and developed a prototype tool having SimScan as
the back-end clone detector. The model and implementation
is limited to the detection of clones and the representation of
the clone information for persistence.
CloneBoard [28] and CPC [131] are Eclipse plugins

similar to CloneScape that can detect and track clones
based on clip-board (copy-paste) activities of programmers.
Both CPC and CloneBoard support linked editing of clone
pairs as described by Toomim et al. [125]. However, CPC
was implemented as a framework to serve as a platform for
future clone management technology, whereas, the focus of
CloneScape was more on clone visualization and naviga-
tion, though their implementation remained incomplete. Hou
et al. are developing a toolkit named CnP [51] for clone man-
agement, which also detects clones based on programmers’
copy-paste activities. Indeed, the current implementation of
CnP offers very limited support for clone management, which
we address in Section X.
SHINOBI [73] is an add-on to the Microsoft Visual Stu-

dio 2005. For clone detection, it parses the source code,
extracts sequences of pre-processed tokens and creates an
index using suffix-tree based technique. SHINOBI internally

1http://www.conqat.org/
2http://blue-edge.bg/download.html

uses CCFinderX’s preprocessor, and thus it can detect Type-
1 and Type-2 clones only, but not Type-3 [143]. It was
developed as a client(IDE)-server(CVS) application to mainly
relocate the clone detection overhead from the client to a
central server. It simply displays clones of a code fragment
underneath the mouse cursor, no further support for clone
management is offered. CodeRush3 is a commercial add-in to
the Microsoft Visual Studio for providing assistance in coding
and refactoring. CodeRush recently introduced a new module
DDC for the detection and consolidation of duplicated code.

Bahtiyar developed JClone [4] as a plugin for Eclipse
for detecting code clones from Java projects. JClone applies
an AST based technique to detect Type-1 and Type-2 clones
only. It enables the user to trigger the detection of clones from
one or more selected files or directories. It also offers a few
visualizations (i.e., TreeMap and CloneGraph views) for aiding
clone analysis to some extent, but no further support for clone
management beyond the detection and visualization of clones.

Nguyen et al. developed JSync [95] as a plugin to the SVN
version control system. Earlier prototypes of JSync appeared
as Clever [98] and Cleman [96]. JSync detects clones
based on similarities among the feature vectors computed over
AST representation of the code fragments. JSync incorpo-
rates some useful features for clone management, which are
discussed in Sections VII and X.
CPD4 is a part of the Java source code analyzer, PMD.

SDD [84] is a clone detection algorithm based on n-neighbour
distance, index and inverted index. An implementation of
SDD5 is also freely available as a plugin to Eclipse. Simian6

is another clone detector available as a plugin to Eclipse.
Another Eclipse plugin, CloneDigger7, applies an approach
based on AST, suffix tree, and anti-unifcation for detecting
clones in source code written in Java or Python. Tairas and
Gray [121] also developed a suffix-tree based clone detector
as a plugin for the Microsoft Phoenix framework. Despite the
integration with IDEs all these tools offer no support for clone
management except for the detection of only Type-1 and Type-
2 clones [16].

3http://devexpress.com/Products/Visual_Studio_Add-in/Coding_
Assistance/

4http://pmd.sourceforge.net/cpd.html
5http://wiki.eclipse.org/index.php/Duplicated_code_detection_tool_(SDD)
6http://www.harukizaemon.com/simian
7http://clonedigger.sourceforge.net/download.html

http://www.conqat.org/
http://blue-edge.bg/download.html
http://devexpress.com/Products/Visual_Studio_Add-in/Coding_Assistance/
http://devexpress.com/Products/Visual_Studio_Add-in/Coding_Assistance/
http://pmd.sourceforge.net/cpd.html
http://wiki.eclipse.org/index.php/Duplicated_code_detection_tool_(SDD)
http://www.harukizaemon.com/simian
http://clonedigger.sourceforge.net/download.html


Another Eclipse plugin, CloneDR8, is an AST-based clone
detector that can detect Type-1 and Type-2 clones. Besides
clone detection, CloneDR offers support for clone removal
as further discussed in Section X. CeDAR [122] can incor-
porate the results from different clone detection tools (e.g.,
CCFinder, CloneDR, DECKARD, Simian, or SimScan)
and can display properties of the clones in an IDE. CeDAR
offers no further support for clone management, except that
those clone properties may be useful for clone analysis.
Moreover, it may suffer from the limitations of the underlying
clone detector used internally. Recently, Zibran and Roy [143]
developed an Eclipse plugin to facilitate focused search for
clones of a selected code fragment. They applied a suffix-
tree-based k-difference hybrid approach to detect both exact
(Type-1) and near-miss (Type-2 and Type-3) clones. They are
also extending their tool towards a versatile clone management
tool [140].

While we see that there are a number of IDE-based clone
detection tools available, there are only a few that in fact
can deal with Type-3 clones. Furthermore, as we will see in
the following sections that there is still a marked lack for
different clone management features in these IDE-based tools.
Researchers possibly should first conduct user studies of what
sort of features are needed for effective clone management
and then start building tools that would help developers
and maintenance engineers in dealing with different types of
clones.

VI. CLONE DOCUMENTATION

Different clone detectors report the results of clone detectors
in different formats such as XML, HTML, and plain text.
There are variations in the reported information as well. Some
clone detectors report clone pairs only, while some other tools
report clones in terms of clone groups. Such variations make it
difficult for data exchange between clone detectors, which also
adds to the challenges in head-to-head empirical comparison
of clone detectors. To minimize the differences in the presen-
tation of clone information, Harder and Göde [44] recently
proposed the Rich Clone Format (RCF), an extensible schema
based data format for storage, persistence, and exchange of
clone data.

Duala-Ekoko and Robillard [30] proposed clone region
descriptor (CRD) to describe clone regions within methods in
a way that is independent of the exact text of the clone region
or its absolute location in a file. However, such a scheme has a
number of limitations. First, small changes in the code corre-
sponding to the <anchor> (e.g., termination condition of loop,
branching predicate of conditional statements) will invalidate
the CRD. Second, the scheme is vulnerable to nesting levels,
and thus a simple addition or removal of nesting level will
invalidate the CRD. Third, the association of ‘else’ blocks with
the closest ‘if’ block prevents the CRD scheme differentiating
between the two types of blocks. Most importantly, the use
of the CRD scheme did not save CloneTracker [30] from

8http://www.semdesigns.com/Products/Clone/

re-invoking the underlying clone detector to identify possible
changes in the clones, though the computational expense of
re-detection was indicated as one of the motivations behind
the design of CRD.

The above discussion indicates that the line and column
information, or the abstract level CRD based documentation
of clone regions are more or less vulnerable to changes in the
evolving code. To overcome such sensitivity to code change,
marker based tagging support in IDEs like Eclipse can be
used for clone documentation. Such tagging of clones can
provide built-in support for accommodating changes in the
source files [21]. Further investigation may be required to
verify this possibility.

Capturing the location of clones reliably is necessary for
tool comparisons and also for tracing clones over subsequent
versions. If tools are to be integrated from different vendors,
an agreed way to document clones is required. RCF is a step
towards a common format [44], but it does not address all
needs [72]. A common conceptual model for clone information
is a major challenge because of competing requirements (e.g.,
it should be both generic and efficient) [42]. There has been
some progress towards a unified model [72]. We expect
real practical progress to happen, however, only if different
research teams actually start to exchange data – and not just
between two teams but among many teams. We do not see this
happening at the moment except for exchanging benchmark
data for clone detectors and for that use case, RCF seems to
be sufficient.

VII. CLONE TRACKING

During the development of an evolving software system
frequent changes take place in the code base. Such changes
may introduce new code segments that might form new clones.
Moreover, changes in source files may invalidate the clone
regions necessitating corresponding updates in the recording
of clone information. Such updates can be accomplished in
two ways: Re-detection and incremental detection.

Re-detection: The detection of clones from the entire
system may be invoked every time the code changes. This
approach may incur too much overhead as the detection of
code clones in a fairly large system can be computationally
expensive. Hence, the approach might not be suitable for
proactive clone management.

Incremental Detection: A better approach can be incre-
mental detection, where only the source code in the modified
portion of the code base is examined for any clones and the
outcome is accumulated with the previously preserved clone
detection results. Not many attempts were made towards incre-
mental clone detection. The first attempt was made by Göde
and Koschke [40]. They proposed a suffix tree based detector
iClone for incremental detection of clones in subsequent
versions of a given system. It detects Type-1, Type-2, and Type-
3 clones.

Hummel et al. [53] proposed an index-based incremental
clone detection approach for Type-1 and Type-2 clones. Higo
et al. [49] proposed an incremental one based on PDGs, where

http://www.semdesigns.com/Products/Clone/


PDGs are generated from the analysis of control and data
dependencies in the program code targeting even semantic
clones. However, PDG based techniques are computationally
expensive and they often report non-contiguous clones that
may not be perceived as clones by a human evaluator [15]. The
clone tracking approach of JSync [95, 97] appears to be com-
putationally elegant. JSync preserves the clone-groups and N
buckets obtained from the initial clone detection. Since JSync
is implemented as a plugin to SVN, the change information
of the source files are readily available, and based on that
information JSync can determine the fragments modified,
added to, or deleted from the code repository. JSync then
removes from the clone-groups those fragments that were
changed or deleted. Then the LSH technique is applied to the
newly added and modified code fragments to place them in
the buckets. Then the fragments in each bucket are compared
pair-wise to update the clone-groups. Thus, the clone detection
technique of JSync appears to be inherently incremental and
consequently computationally efficient for tracking clones. We
envision that other classes of techniques (cf., Section IV) will
also have incremental variants as there is a clear need for
scalable, fast and near-miss incremental detection techniques
for efficient clone management.

VIII. ANALYSIS OF CLONE EVOLUTION

Software development and maintenance in practice follow
a dynamic process. With the growth of the program source,
code clones also experience evolution from version to version.
Many studies have been conducted to date for understanding
the overall evolution [8, 40, 112, 145], stability of cloned
code [6, 45, 50, 81, 90, 91, 92], the relation of clone evolution
with software faults [8, 39, 132, 133], and other characteristics
of clone evolution. While such studies inform the characteristic
and impact of code cloning, further in-depth analyses that
investigate the change patterns in the evolution of individual
clone fragments can suggest techniques for optimizing clone
management including refactoring and removal. Because there
is already a recent survey on clone evolution [99], we keep this
section brief with specific focus on the evolution of individual
clone fragments and their change patterns.

Kim et al. [77] first coined the term “clone genealogy",
which refers to a set of one of more lineage(s) originating
from the same clone-group. A clone lineage is a sequence
of clone-groups evolving over a series of versions of the
software system. To map clones across subsequent versions
of a program (i.e., extraction of clone genealogies) several
approaches have been proposed in the literature. While most
of these approaches [6, 8, 77, 108] focused on genealogies of
Type-1 and Type-2 clone genealogies, gCad [110] is the only
Type-3 clone genealogy extractor to date released as a separate
tool [111].

Studies [6, 16] on clone change patterns revealed that
inconsistent changes in clones sometimes caused program
faults. Moreover, late propagation is reported to have even
more significant correlation with software defects and thus
concluded to be “more risky than other clone genealogies" [8].

On the basis of clone genealogies, a number of studies [77,
108, 110, 112, 146] have been conducted to explore the change
patterns and characteristics in the evolution of individual
clone fragments. Some of the findings from those studies
compliment one another, while some of the results derived
from those studies appear to be contradictory. Therefore,
more studies in larger scale are still necessary to confirm the
agreeing observations and to shed light on the contradictory
findings.

Studies on clone change patterns using a genealogy model
can suffer from a number of issues. First, due to the threshold
based similarity measure used in practice for Type-3 clones,
there remains an open question on the appropriate value for
the threshold. Moreover, for Type-3 clones, is it an appropriate
practice to group Type-3 clones into different disjoint classes?
If not, the traditional notion of genealogy cannot apply to
Type-3 clones. Can we devise a more appropriate alternative?
Second, a genealogy can be characterized as inconsistently
changed if only a single clone over the entire length of
the genealogy experiences even for very minor inconsistent
changes. To draw a better picture, we may capture information
such as, what portion of clones in clone groups change in
how many versions, and how large the changes are. Finally,
from the correlation between late propagation and software
defects, can we really derive a causal relationship concluding
that late propagation is riskier than other clone genealogies?
Inconsistent changes are believed to often cause defects, and
clones may disappear from a genealogy due to inconsistent
changes. Later modifications, which could be even bug fixing
activities, may cause changes in the disappeared clone to sync
it to its original clone-group. In such a scenario, late propa-
gation actually contributes in repairing the defect introduced
from inconsistent changes. Thus, we believe, late propagation
can really play a dual role, and more studies are necessary to
distinguish them.

Visualization support can aid analysis of clone evolution,
and thus different techniques and tools have been proposed
for visualizing properties of clone evolution including the
genealogy model. Adar and Kim [1] developed SoftGuess,
a system for clone evolution exploration that supports three
different views. The genealogy browser offers a simple vi-
sualization of clone evolution where nodes represent clones,
arranged from left to right, and those that belong to the same
class are arranged vertically in the same position. Thus, each
column represents a version. A link between a pair of node
reflects the predecessor and successor relationship during the
evolution of the software. The encapsulation browser shows
how clones within a clone group are distributed in different
parts of a system and how they fit in the hierarchical organi-
zation of the software system by visualizing the containment
relationship through a tree structure. Finally, the dependency
graph describes how the nodes (package, class or method)
within a version are evolved from other nodes and how they
evolve in the next version. In addition, SoftGUESS also
supports charting and filtering mechanisms based on Gython,
an SQL-like query language. However, SoftGUESS lacks



an ‘overview’ feature and requires user interaction for data
reduction through queries. Although a query is a powerful
mechanism to identify important patterns of cloning, formu-
lating queries could be difficult as this requires more cognitive
effort from the developers.

Harder and Göde [44] developed a multi-perspective tool for
clone evolution analysis, called CYCLONE. It offers five differ-
ent views to analyze clone data stored in an RCF file, where
RCF is a binary format to encode clone data including the
evolutionary characteristics. The evolution view in CYCLONE
visualizes clone genealogies using simple rectangles and cir-
cles to denote software entities. Each circle represents a clone
fragment arranged in a set of rows where each row represents
a particular version of the software. The clones that belong to
the same clone class are packed within a rectangle. Finally,
lines represent the evolution of a clone fragment. In addition,
the view employs colors to distinguish types and the changes
of the clones. Although the view highlights many important
evolutionary characteristics, the volume of data produced by
the genealogy extractor still limits its usefulness, thus calls
for overview and filtering mechanisms. A similar visualization
support is available in VisCad [3], with additional flexibility
of metric-based filtering of genealogies.

While there have been a good number of studies (c.f.,
Section XI) on visualization of clones in a single version
of a software system, we still need further studies to figure
out useful techniques for visualizing clone evolution from
management perspective. For example, what sort of visual-
izations are useful for clone management activities and what
are their implications in the context of real world software
development? We need to understand the claims and believes
about code clones [18] including empirical evidence from
developers’ perspective [20, 146] and then need to design the
visualization techniques appropriately. It is also important to
understand developers’ intent when designing such tools [19].

Recently, Saha et al. [109] presented an idea for clone
evolution visualization using the popular scatter plot. In their
proposed approach, scatter plots show the clone pairs associ-
ated within a pair of software unit (file, directory or package).
Based on the type of clone genealogies they are associated
with, clone pairs are rendered with different colours. Selecting
a clone pair through user interactions (double clicking on a
clone pair in the scatter plot) shows the associated genealogy
in a genealogy browser. The proposal facilitates developers or
maintenance engineers to identify evolutionary change patterns
of the clone classes in a particular version and then provide
a way to call for genealogy browser to dig deeper. However,
it does not provide overall characteristics of the genealogies.
Moreover, due to the large number of clone pairs, selection
and useful pattern identification in such a scatter plot can
be difficult, which is why different variants of the traditional
scatter plots appeared in the literature [24].

IX. CLONE ANNOTATION

The developers often deliberately create clones, for exam-
ple, to enable independent evolution of similar implementa-

tions. During the clone management process, the developer
may not want to refactor/remove those clones, and may want
to mark those to indicate such decisions so that they will not
have to encounter those same sets of clones over and over.
Moreover, the decision needs to be documented and shared
among different programmers, and there should be facilities
for the developers to review those clones at a later time, in
case they want to re-evaluate their management decision. To
the best of our knowledge, such a feature is found only in
JSync [95], which allows the developer to annotate pairs of
clones for avoiding future encounters.

Although there are several ideas and implementations of
clone-evolution visualization, there is not enough empirical
assessment of these. We also believe that further progress
can be achieved by studying existing work in information
visualization.

X. TECHNIQUES FOR REENGINEERING/REFACTORING OF
CLONES

The investigations of opportunities for clone based reengi-
neering and refactoring of clones for their removal have sug-
gested techniques such as generics, design patterns, software
refactoring patterns, and synchronized modifications of code
clones.

Generics and Templates: Basit el al. [10] investigated the
potential of generics in removing code clones. They carried
out two case studies on the Java Buffer Library and the C++
Standard Template Library (STL). The Java Buffer Library
was found to have 68% redundant code, and using generics
they were able to remove only 40% of them. Though, they
performed little better for the C++ STL, they concluded that
the constraints of language constructs limit the applicability
of generics in clone removal. They further hypothesized that
meta level parameterizations might perform better as they are
relatively lesser restrictive than generics or templates.

The hypothesis on the potential of meta level parameteriza-
tions was addressed by Jarzabek and Li [55] in a later study.
They also used the Java Buffer Library for their case study.
They applied a generative programming technique using XVCL
(XML-based Variant Configuration Language)9 to represent
similar (but not necessarily identical) classes and methods in
generic and adaptable form. Using the technique they were
able to eliminate 68% of the code from the original Java Buffer
Library.

Consistent Renaming: Programmers often perform modifi-
cations after copy-pasting a code fragment. Such modification
typically include renaming of identifiers according to the
new context of the cloned code. IDEs like Eclipse provide
necessary support for consistently renaming an identifier and
all its references within scope. Jablonski and Hou developed
CReN [54] as a plugin to Eclipse that can check for any
inconsistencies in the renaming of identifiers within a code
fragment and suggest modifications for making the renaming
consistent.

9http://xvcl.comp.nus.edu.sg/

http://xvcl.comp.nus.edu.sg/


Since JSync [95] is developed as a plugin to the SVN
version control system, it can exploit the change information
between versions of Java source files to determine whether
any changes occurred in cloned code regions.

Refactoring Patterns Fowler in his book [35] presented
72 patterns for refactoring source code in general for the
removal of code smells. Over time, the number of refactoring
patterns has increased to 93, and a refactoring catalog10 is
maintained that lists and describes them all. Among those
general software refactoring patterns [35], Extract method,
Move method, Pull-up method, Extract superclass, Extract
utility-class, and Rename refactor patterns are found to be
suitable for clone refactoring, as suggested by earlier re-
search [48, 85, 114, 136, 141, 144]. Details about these
refactoring patterns can be found in the refactoring catalog
and elsewhere [35].

Besides these prominent refactoring patterns, other low level
refactoring operations such as identifier renaming, method
parameter re-ordering, changes in type declarations, splitting
of loops, substitution of conditionals, loops, algorithms, and
relocation of methods or fields may be necessary to produce
generalized blocks of code from near-miss clones [141].
Kerievsky [75] proposed the chained constructor refactoring
pattern11, to eliminate duplicated code from the constructors
of the same class [94]. Other refactoring patterns that can be
found in the literature are some sort of variants or composi-
tions of the aforementioned object-oriented refactoring (OOR)
patterns. Other than the OOR patterns, Schulze et al. [115]
proposed three aspect oriented patterns described as extract
feature into aspect, extract fragment into advice, and move
method from class to interface.

Type-3 clones remain a challenge for automated clone refac-
toring because they have difference that cannot be eliminated
with a simple rename refactoring. Here, an additional step
is required to abstract from the difference in a way that
enables an extract-method refactoring. Anti-unification used to
detect clones may help in refactoring, too, in certain situation.
We expect progress for some Type-3 clones at least. It is
an interesting question how far we can get. A couple of
recent studies [14, 82] also call for further studies on clone
refactoring including the refactoring of task specific near-miss
clones. Indeed, clone maintenance support could be increased
by unifying clone detection and refactoring activities [123] and
we need to focus more on such studies.

XI. ANALYSIS AND IDENTIFICATION OF POTENTIAL
CLONES FOR REFACTORING

For the purpose of finding and characterizing code clones
suitable for refactoring, reengineering, or removal, in depth
analysis of the various properties of the clones and their
context is required. Clone visualization has been proven to be
effective in aiding such analysis. Therefore, we first discuss
the tools and techniques for code clone visualization, and then

10Catalog of OO refactoring patterns: http://refactoring.com/catalog/
11Catalog of 27 refactoring patterns from J. Kerievsky’s book: http://

industriallogic.com/xp/refactoring/catalog.html

we present the findings from analysis of code clones in search
for clone based reengineering opportunities.

A. Visualization of Distribution and Properties of Clones

Almost all the clone detection tools report clone information
in the form of clone pairs and/or clone groups in a textual
format where only the basic information about the clones
such as the file name, line number, starting position, ending
position of clones are provided. The returned clones also differ
in several contexts such as types of clones, degree of similarity,
granularity and size.

Moreover, there is a huge amount of clones in large systems.
For example, CCFinder resulted 13,062 clone pairs for Apache
httpd [67]. Because of the insufficient information on the
returned clones, their various contexts, and their sheer number,
the presentation of clones becomes difficult. For the proper use
of the detected clones, especially for clone management, the
aid of suitable visualization is crucial. In the following, we list
some of the visualization approaches that have been proposed
in the literature.

A major challenge in identifying useful cloning information
is to handle the large volume of textual data returned by
the clone detectors. To mitigate the problem, a number of
visualization techniques, filtering mechanisms and support
environments are proposed in the literature. Jiang et al. [58]
categorized the proposed clone presentation techniques based
on two dimensions. The first dimension refers to the level
at which the entities are visualized (such as at the code
segment level or file level or subsystem level). The second
dimension refers to the type of clone relation addressed by the
presentation, that is, whether clones are shown at the clone pair
level or grouped into clone classes or super clones. A super
clone is an aggregated representation of multiple clone groups
between the same source entities (e.g., file).

Johnson [60] used the popular Hasse diagram to represent
textual similarity between files. Later, he also proposed hyper-
linked web pages to explore the files and clone classes [61].
Cordy et al. [25] used HTML for interactive presentation of
clones where overview of the clone classes is presented in a
web page with hyperlinks and users can browse the details
of each clone class by clicking on those links. Although such
representations offer quick navigation, they cannot reveal the
high level cloning relations.

A set of polymetric views [103] were also proposed in the
literature that permit encoding multiple code clone metrics in
visual attributes. Among various visualizations, scatter plot is
quite popular and capable of visualizing inter-system and intra-
system cloning [24, 87]. However, the size of the scatter plot
depends on the size of input rather than the amount of cloning.
Thus, using a scatter plot for visualizing cloning relation of
a large software system may become challenging due to the
large size of the plot.

Moreover, in scatter plot, non-contiguous sections that con-
tain the same clone cannot be grouped together. To overcome
this limitation, Tairas et al. [124] proposed a graphical view
of clones (also known as Visualizer view) that represents each

http://refactoring.com/catalog/
http://industriallogic.com/xp/refactoring/catalog.html
http://industriallogic.com/xp/refactoring/catalog.html


source file as a bar and clones within the files are represented
with stripes. Clones belong to the same class are encoded with
the same color.

Jiang et al. [57] extended the idea of cohesion and coupling
to code clones and proposed a visualization that uses shape
and color to encode the metric values. They also developed
a framework [57] for large scale clone analysis and proposed
another visualization, called a clone system hierarchical graph
that shows the distribution of clones in different parts (with
respect to the file-system hierarchy) of a system. Fukushima et
al. [36] developed another visualization using graph drawing
to identify diffused (scattered) clones. Here, nodes represent
the clones. Those nodes that are located in the same file are
connected with edges to form a clone set cluster. Nodes that
connect different clone set clusters are called diffused clones
(have cloning relation in different files implementing different
functions).
Gemini [127] is an example of a clone support environ-

ment that uses CCFinder for clone detection and can visualize
clone relationships using scatter plots and metric graphs.
Kapser and Godfrey developed CLICS [70, 71], another tool
for clone analysis. CLICS can categorize clones based on
their previously developed clone taxonomy [69] and support
query based filtering. Tairas et al. [124] developed an Eclipse
plug-in that works with CloneDR as a clone detector and
implements the visualizer view along with general information
and detected clones list views.
Clone Visualizer [139] is an Eclipse plugin that

works with Clone Miner to detect clones. In addition to
supporting clone visualization through stacked bar charts and
line graphs, it supports query based filtering. CYCLONE12 [44]
is another clone visualizer that supports single and multi-
version program analysis and uses RCF (Rich Clone For-
mat) [44] file as an input. A separate viewer application named
RCFVIEWER13 is also developed for the visualization of clone
information stored in RCF. Recently, Xing et al. [134] pro-
posed CloneDifferentiator that identifies contextual differences
of clones and allows developers to formulate queries to distill
candidate clones that are useful for a given refactoring task.

As can be noted, all the visualization techniques focus on
visualization of clone pairs or clone groups with respect to
their dispersion in the file-system hierarchy only. However, the
cost-benefit analysis of code clone refactoring (Section XI-B)
takes into account the distribution of clones in the inheritance
hierarchy. Therefore, from the perspective of clone removal
or refactoring, the visualization of the clones with respect to
the inheritance hierarchy can offer useful insights, and future
work in clone visualization should address this possibility.

For visualization of clone evolution, the proposed tech-
niques for visualizing clones of one version of a system
lacks empirical assessment mostly. We possibly need use-
case specific visualizations with empirical support as of Live
Scatterplots [23]. We thus expect to have more empirical user

12http://softwareclones.org/cyclone.php
13http://www.softwareclones.org/

studies as the field matures. Furthermore, clone visualization
from big data is also badly needed [34].

B. Cost-benefit Analysis and Scheduling of Refactoring

Not much research has been done towards cost-benefit anal-
ysis of code clone refactoring and their scheduling. Bouktif et
al. [17] first proposed a simple effort model for the refactoring
of clones in procedural code. Zibran and Roy [141, 142, 144]
proposed a more comprehensive effort model for estimating
clone refactoring efforts. They formulated scheduling of code
clone refactoring as a constraint satisfaction optimization
problem and applied constraint programming (CP) technique
to compute an optimal solution of the problem.

Lee et al. [85] applied ordering messy GA (OmeGA)
to schedule refactoring of code clones. Mondal et al. [93]
proposed an automatic way of ranking clones for refactor-
ing through mining association rules of the evolving clones.
Juergens and Deissenboeck [63] described a detailed analytic
cost model based on potential effects of clones on different
maintenance activities. The existing models make several
implicit and explicit assumptions and do not give concrete
values for weights included in the formulae.

Overall, we know too little about the real costs incurred
by clones and the risks and benefits of refactorings and other
measures to compensate the negative effects of clones for a
realistic cost model. We hardly know the factors influencing
the costs. Only through a series of empirical field studies and
experiments will we ever get closer to such a cost model. We
remain skeptical as to whether we will ever get close enough
given the many variables influencing the costs and gains of
clones.

XII. ROOT CAUSES FOR CODE DUPLICATION

Code clones do not occur in software systems by them-
selves. They are created. There are several factors that might
force or influence the developers and/or maintenance engineers
in cloning code in a system. In order to manage clones
properly, we need to study the root causes for their creation.
In the following we list some of the potential root causes.

Development Strategy Clones can be introduced in soft-
ware systems due to the different reuse and programming
approaches. Reusing code, logic, design and/or an entire
system (as in product lines [31]) are the prime reasons of code
duplication. Reusing existing code by copying and pasting
(with or without minor modifications) is the simplest form of
reuse mechanism in the development process which results in
code duplication. It is a fast way of reusing reliable semantic
and syntactic constructs.

The term Forking is used by Kapser and Godfrey [68] to
mean the reuse of similar solutions with the hope that they
will diverge significantly with the evolution of the system.
For example, when creating a driver for a hardware family, a
similar hardware family may already have a driver, and thus
can be reused with slight modifications. Similarly, clones can
be introduced when porting software to new platforms and

http://softwareclones.org/cyclone.php
http://www.softwareclones.org/


functionality and logic can be reused if there is already a
similar solution available.

Maintenance Benefits Clones are also introduced in the
systems to obtain several maintenance benefits. One of pri-
mary factors could be reducing risk in developing new code.
Cordy [22] reports that clones do frequently occur in financial
software as there are frequent updates/enhancements of the
existing system to support similar kinds of new functionalities.
Financial products do not change that much from the existing
one, especially within the same financial institutions. The
developer is often asked to reuse the existing code by copying
and adapting to the new product requirements because of
the high risk (monetary consequences of software errors can
run into the millions in a single day) of software errors in
new fragments and because existing code is already well
tested (70% of the software effort in the financial domain is
spent on testing). Introduction of new bugs can be avoided
in critical system functionality by keeping the critical piece
of code untouched [41]. For keeping the software architecture
clean and understandable sometimes clones are intentionally
introduced to the system [68].

Overcoming Underlying Limitations Clones can be in-
troduced due to limitations of the programming language,
especially when the language in question does not have
sufficient abstraction mechanisms such as inheritance, generic
types (called templates in C++) or parameter passing (missing
from, e.g., assembly language and COBOL) and consequently,
the developers are required to repeatedly implement these as
idioms. Such repeating activities may create possibly small
and potentially frequent clones [11].

There are also several limitations associated with the pro-
grammers for which clones are introduced in the system. For
example, it is generally difficult to understand a large software
system. This forces the developers to use the example-oriented
programming by adapting existing code developed already.
Furthermore, often developers are assigned short time frames
in completing tasks. Due to such time limits, developers look
for an easy way of solving the problems at hand and conse-
quently look for similar existing solutions and consequently
clones are introduced in software. Sometimes the productivity
of a developer is measured by the number of lines he/she
produces per hour. In such circumstances, the developer’s
focus is to increase the number of lines of the system and
hence tries to reuse the same code again and again by copying
and pasting with adaptations instead of following a proper
development strategy. Sometimes the developer is not familiar
with the problem domain at hand and hence looks for existing
solutions of similar problems.

Cloning By Accident Clones may be introduced into soft-
ware even by accidents. The use of a particular API normally
needs a series of function calls and/or other ordered sequences
of commands. For example, when creating a button using
the Java SWING API, a series of commands is to create the
button, add it to a container, and assign the action listeners.
Similar orderings are common with libraries as well [68].
Thus, the uses of similar APIs or libraries may introduce

clones. Coincidentally implementing the same logic by dif-
ferent developers may also cause cloning. Programmers may
unintentionally repeat a common solution for similar kinds
of problems using the common solution pattern of his/her
memory to such similar problems. Therefore, several clones
may unknowingly be created in the software systems.

As can be seen from the above discussion, we need to dig
deeper into each of the root causes so that we can either avoid
clones or can keep track of the clones during development
making clone management easier in the maintenance as also
noted by Zhang et al. [137]. We can also think of bet-
ter programming languages design keeping more abstraction
mechanisms for different types of clones at the fingers end of
the developers.

XIII. CLONE MANAGEMENT STRATEGIES

For dealing with code clones, Mayrand et al. [88] pro-
posed two concrete activities namely “problem mining" and
“preventive control", which were further supported by a later
study of Lague et al. [83]. Giesecke [37] categorized them into
compensatory and preventive clone management, respectively.
Giesecke [37] suggested that all clone management activities
can be associated with one or more of the three categories:
corrective, preventive, and compensatory management.

Corrective clone management aims for removal of existing
clones from the system. The objective of Preventive clone
management is to prevent creation of new clones in the
system. Compensatory clone management deals with applying
techniques (such as annotation, documentation) for avoiding
the negative impacts of clones that are not removed from the
system for some valid reasons. In practical settings, avoiding
clones may be impossible at times, and the expectation of a
clone-free system can be unrealistic. Thus, preventive clone
management actually refers to proactive management [51,
52] that aims to deal with the clones during their creation
or soon after they are introduced. An opposite strategy,
retroactive clone management [21] adopts the post-mortem
approach [143], where clone management activities initiate
after the development process is complete up to a milestone.

Clone management in legacy systems can be the most
appropriate for the post-mortem strategy. Indeed, prevention
is better than cure. Therefore, proactive clone management is
preferable to post-mortem approach. While, ideally, all clones
should be managed proactively, in practical settings, proactive
treatment for all clones may not be feasible or possible.
Therefore, a versatile clone management system should focus
on support for proactive management, while at the same
time, should also facilitate retroactive clone management [21].
Recently, Zhang et al. [138] proposed, CCEvents that provides
timely notifications about relevant code cloning events for
different stakeholders through continuous monitoring of code
repositories. This is one of the first studies on contextual and
on-demand clone management that clearly shows we need
further studies on clone management as well.



XIV. DESIGN SPACE FOR A CLONE MANAGEMENT
SYSTEM

Most clone detectors [47, 56, 66, 105] are implemented as
stand-alone tools separate from IDEs (Integrated Development
Environments) and typically search for all clones in a given
code base. While clone detection from such tools can help
clone management in a post-mortem approach, researchers
and practitioners [37, 43, 51, 52, 83, 95, 140, 143] believe
that clone management activities should be integrated with
the development process to enable proactive management.

Hou et al. [52], during the on-going development of their
clone management tool CnP [51], explored the design space
towards tool support for clone management. However, their
work was tightly coupled with the clone detection technique
based on the programmers’ copy-paste operations. Thus, their
findings are limited in scope to the management of copy-pasted
code, and most of the findings are not applicable to clone
management based on similarity based clone detection.

A. Architectural Alternatives of Integration

We identify three major alternatives and some sub-
alternatives in the design space for a versatile clone manage-
ment tool. These alternatives are inspired by our experience
and the different clone management scenarios reported by
Giesecke [37].

Architectural Centrality: The need for the integration of
clone management activities with the development process
suggests that the IDEs should include features to support clone
management activities during the actual development phase.
While a programmer typically works inside an IDE running on
her individual workstation, for fairly large projects, especially
in industrial settings, a team of developers collaboratively
works on a shared code base kept in a version control system
set up on a server. Hence, the supports for clone management
activities can be implemented as features augmenting the local
IDEs, or the functionalities can be implemented at a central
repository.

Decentralized Architecture: The clone management func-
tionalities, when augmenting the features in local IDEs, can
enable the individual programmers to exploit the benefit of
clone management. In the decentralized scenario different
developers can use different tools, and some programmers can
get the flexibility to completely or partially disregard clone
management at their respective situations. Apparently, such
a decentralized implementation may completely disregard the
existence of a central server, and enforces proactive clone
management before check-in to the shared repository. How-
ever, this necessitates additional requirements for establishing
means for communication between distributed developers, as
well as combining and synchronizing clone information across
all the developers.

Centralized Architecture: The centralized architecture in-
herently aims to support clone management in a distributed
development process. The functionalities can be implemented
as a client-server application on top of central version control
systems. Such a centralized clone management system may

require greater effort and offer less flexibility than a decen-
tralized implementation [37]. Indeed, a client-server imple-
mentation cannot support those individual programmers who
work alone on their stand-alone local machines [143]. But,
the centralized architecture may facilitate the integration of
clone detection features with the continuous or periodic (e.g.,
diurnal) build process [135].

We currently do not know what strategy works best un-
der which circumstances. Future research should compare
the different ways of integrating clone management in the
development process.

B. Triggering Actors in Clone Management
A clone management activity may be initiated by the

developer or by the system in response to certain events.
Human Triggered Initiative: A developer, after writing

or modifying a piece of code, may invoke the search for
clones in the system, upon finding the clones, she may
analyze and decide how to deal with them. In such an ad-
hoc triggering scenario, the developer, at times, may forget
to perform the necessary clone management. An instance of
clone management activity may also be periodically scheduled
in advance as part of a larger plan of process activities, and
clone management activities can be carried out following the
post-mortem approach on the current status of the code base.

System Triggered Initiative: The development environ-
ment can trigger clone management activities in response
to certain events, such as saving changes in the code, or
check-in of modified code to the central repository having the
clone detection capability integrated with the build process.
Such events may notify and suggest the developer to perform
the required clone management operations. However, care
must be taken so that those auto-generated notifications and
suggestions do not irritate the developer or hinder her normal
flow of work.

Scope of Clone Management Activity: An instance of
clone management activity may be clone-focused or system-
focused. A clone-focused activity deals with a narrow set
of clones of a particular code segment of interest. On the
contrary, a system-focused clone management activity aims
to deal with a broad collection of clones in the entire code
base, or particular portions of the system.

We need to further investigate for which kind of events
clone management should be triggered by whom. For changes
in clones – in particular inconsistent ones – likely a system
should notify a developer. The challenge for all actions trig-
gered by a system must be to avoid false alarms. Otherwise
developers will soon give up using a clone management tool.
For general quality assurance, a quality manager might observe
trends in clones and take initiatives when she sees a increase
of redundancy. The challenge for human triggered actions is
to provide accurate data on demand and to find significant
indicators of problems.

C. Scope and Point in Time of Clone Management
Clones are not restricted to source code. Finding clones in

earlier artifacts may avoid source code clones.



Detection

Documentation

Type-1

Type-2

Type-3

Type-4

Core 
information

Additional
information

Interoperability

Analysis

Visualization

Tracking

Recommendation

Annotation

Refactoring
operation

Refactoring 
Scheduling

Refactoring
verification

dispersion 
in file-system

similarity
distribution in 
inheritance 
hierarchy

cost-benefit 
analysis

diff

distribution in 
inheritance 
hierarchy

navigation
Type-1

Type-2

Type-3

Type-4

composite
refactoring

consistent
rename

clone-pair 
merge

extract 
method

basic with 
persistence

Persistence with 
tool support

automation

recommendation

consistent
rename

clone-pair 
merge

authomated
schedulingauthomated

estimation of 
cost-benefit

verify 
renaming for 
consistency

automated 
test case

generation or 
adaptation

Done well enough Attempted with some success Yet to achieve

Legends

dealing with
groups of 3 or 
more clones

dealing with
groups of 3 or 
more clones

Fig. 5. Achievements and scopes along different dimensions of clone management activities

Clones in requirements documents may lead to duplicate
implementation of very similar features if, for example, sim-
ilar use cases are given to different development teams to
implement. In turn, this may result in semantic code clones,
or even code segments with very similar structure. Therefore,
the detection of clones in requirements specification artifacts
could help avoiding clones in code, or to identify semantic
clones, which in turn could help to differentiate features from
sub-features.

Similarly, clones in design models, especially in model-
driven development, may also lead to clones in the source
code. Thus, the upfront detection of clones in design models
might help to reconsider architectural choices, and result in a
leaner, more abstract and essential design resulting in fewer
code clones.

For these reasons, clone management must consider all
types of software artifacts and should be part of early stages
in software development. There are initial studies in detecting
clones in other types of artifacts such as in requirements
documents [62, 65], in models [29, 117], in sequence diagrams
[86] or in Spreadsheets [46], which need to explore and deepen
further. We envision clone management tools to broaden from
source code to other artifacts and as a consequence a good
chance to avoid source-code clones.

XV. INDUSTRIAL ADOPTION OF CLONE MANAGEMENT

Despite the active research on software clones and their
impact on the development and maintenance of software
system, management of code clones is still far from wide
industrial adoption. A reason to this could be the unavailability
of integrated tool support for versatile clone management. Or
maybe industry is just not aware of the problem. Maybe clones
are even not a real problem in the first place because the
advantages outweigh the disadvantages.

What we as researchers need to show first is sufficient
empirical evidence of real problems caused by clones. We have
made good progress in recent years here. Then we need to pro-
vide usable working solutions. We need to demonstrate their
benefits in real case studies. Because benefits are expected to
show up only in the long run, we need long-term studies in
realistic industrial settings. Such long-term industrial studies
are difficult to conduct, however.

Despite these difficulties, we see signs that clone manage-
ment is gathering momentum in industry. There are several
clone detectors available as Eclipse plug-ins and only recently
Microsoft introduced a clone management feature in Microsoft
Visual Studio [26, 130]. There are several other industrial
attempts as well [128, 135] including a recent Dagstuhl
seminar on the topic [13].



XVI. CONCLUSION

In Figure 5, we summarize the state of the art along the
different dimensions of code clone management and scopes
for further improvements. Although software clone research
matured over the last decade, the majority of the work focused
on the detection and analysis of code clones. Compared to
those, clone management has earned recent interest due to
its practical importance. Notably several surveys [80, 99,
102, 104, 107] appeared in the literature, none of which
focused on clone management, and thus a survey on clone
management was a timely necessity. This paper presents a
comprehensive survey on clone management and pin-points
research achievements and scopes for further work towards a
versatile clone management system.

At the fundamental level, the vagueness in the definition
of clones at times causes difficulties in formalization, gener-
alization, creation of benchmark data, as well as comparison
of techniques and tools. A set of task oriented definitions or
taxonomies can address these issues. Most of the integrated
tools have limitations in detecting Type-3 clones, and the
detection of Type-4 clones has still remained an open problem.
Moreover, most of the research on software clones so far
emphasized clone analysis at different levels of granularity.
A variety of techniques for the visualization of clones and
the evolution has been proposed. Surprisingly, while clone
analysis points to the importance of considering inheritance
hierarchy for extracting clone reengineering candidates, there
is still not enough visualization support to analyze clones with
respect to their existence in the inheritance hierarchy.

Research on clone management beyond detection has
mostly been limited to devising techniques to identify clones.
While detection is a necessity for clone management and many
improvements have been achieved here, filtering and ranking
relevant findings is still a major challenge. It is not yet clear
what constitutes a bad clone that requires treatment. Neither
is it sufficiently known what kind of treatment (refactoring or
other types of compensation) works best under which circum-
stances. For the bad clones, we need to conduct root-cause
analysis to better understand why they came into existence
and how they could be avoided.

The state of the art demands more research in semi-
automated tool support for clone refactoring and cost-benefit
analysis of clone removal/refactoring. For integrated clone
management, JSync [95] offers a relatively wide set of
features compared to others. But, we see that the state of
the art is still far from integrated tool support, and more
is to be done towards a versatile clone management system.
Perhaps, due to the unavailability of such tools, there is not
much developer-centric ethnographic studies on the patterns
of clone management in practice, as well as on the usability
and effectiveness of tool support. This survey exposes such
potential avenues for further research to create a better impact
in the community.

Acknowledgement: We would like to thank our anonymous
reviewers for their useful suggestions and critiques.

REFERENCES
[1] E. Adar and M. Kim. SoftGUESS: Visualization and exploration of

code clones in context. In ICSE, pages 762 –766, 2007.
[2] F. Al-Omari, I. Keivanloo, C. K. Roy, and J. Rilling. Detecting clones

across microsoft .net programming languages. In WCRE, pages 405–
414, 2012.

[3] M. Asaduzzaman, C. K. Roy, and K. A. Schneider. VisCad: Flexible
code clone analysis support for NiCad. In IWSC, pages 77–78, 2011.

[4] M. Bahtiyar. JClone: Syntax tree based clone detection for Java.
Master’s thesis, Linnaeus University, 2010.

[5] B. Baker. On finding duplication and near-duplication in large software
systems. In WCRE, pages 86 –95, 1995.

[6] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells in software
evolution. In ICSM, pages 24–33, 2007.

[7] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis.
Measuring clone based reengineering opportunities. In METRICS,
pages 292 –303, 1999.

[8] L. Barbour, F. Khomh, and Y. Zou. An empirical study of faults in
late propagation clone genealogies. Journal of Soft.: Evol. and Proc.,
pages –, 2013 (in press). doi: 10.1002/smr.1597.

[9] H. Basit and S. Jarzabek. Detecting higher-level similarity patterns in
programs. SIGSOFT Softw. Eng. Notes, 30:156–165, 2005.

[10] H. Basit, D. Rajapakse, and S. Jarzabek. An empirical study on limits
of clone unification using generics. In SEKE, pages 109–114, 2005.

[11] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. Beyond templates: a
study of clones in the STL and some general implications. In ICSE,
pages 451–459, 2005.

[12] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
detection using abstract syntax trees. In ICSM, pages 368–377, 1998.

[13] I. D. Baxter, M. Conradt, J. R. Cordy, and R. Koschke. Software clone
management towards industrial application (dagstuhl seminar 12071).
Dagstuhl Reports, 2(2):21–57, 2012.

[14] S. Bazrafshan and R. Koschke. An empirical study of clone removals.
In ICSM, pages 50–59, 2013.

[15] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Com-
parison and evaluation of clone detection tools. IEEE Trans. on Softw.
Engg., 33(9):577–591, 2007.

[16] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. Has-
san. An empirical study on inconsistent changes to code clones at the
release level. Science of Comp. Prog., 77(6):760 – 776, 2012.

[17] S. Bouktif, G. Antoniol, M. Neteler, and E. Merlo. A novel approach
to optimize clone refactoring activity. In GECCO, pages 1885–1892,
2006.

[18] D. Chatterji, J. C. Carver, and N. A. Kraft. Claims and beliefs about
code clones: Do we agree as a community? a survey. In IWSC, pages
15–21, 2012.

[19] D. Chatterji, J. C. Carver, and N. A. Kraft. Cloning: The need to
understand developer intent. In IWSC, pages 14–15, 2013.

[20] D. Chatterji, J. C. Carver, N. A. Kraft, and J. Harder. Effects of cloned
code on software maintainability: A replicated developer study. In
WCRE, pages 112–121, 2013.

[21] A. Chiu and D. Hirtle. Beyond clone detection. CS846 Course Project
Report, University of Waterloo, 2007.

[22] J. R. Cordy. Comprehending reality: Practical barriers to industrial
adoption of software maintenance automation. In IWPC, pages 196–
206, 2003.

[23] J. R. Cordy. Exploring large-scale system similarity using incremental
clone detection and live scatterplots. In ICPC, pages 151–160, 2011.

[24] J. R. Cordy. Live scatterplots. In IWSC, pages 79–80, 2011.
[25] J. R. Cordy, T. R. Dean, and N. Synytskyy. Practical language-

independent detection of near-miss clones. In CASCON, pages 1–12,
2004.

[26] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie. XIAO: tuning
code clones at hands of engineers in practice. In ACSAC, pages 369–
378, 2012.

[27] I. Davis and M. Godfrey. Clone detection by exploiting assembler. In
IWSC, pages 77–78. ACM, 2010.

[28] M. de Wit, A. Zaidman, and A. van Deursen. Managing code clones
using dynamic change tracking and resolution. In ICSM, pages 169–
178, 2009.

[29] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner,
J. Girard, and S. Teuchert. Clone detection in automotive model-based
development. In ICSE, pages 603–612. ACM, 2008.

[30] E. Duala-Ekoko and M. Robillard. Clone region descriptors: Repre-



senting and tracking duplication in source code. ACM Trans. Softw.
Eng. Methodol., 20:3:1–3:31, 2010.

[31] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki. An exploratory study of cloning in industrial software
product lines. In CSMR, pages 25–34, 2013.

[32] S. Ducasse, M. Rieger, and S. Demeyer. A language independent
approach for detecting duplicated code. In ICSM, pages 109 –118,
1999.

[33] R. Falke, P. Frenzel, and R. Koschke. Empirical evaluation of clone
detection using syntax suffix trees. Empirical Software Engineering,
13:601–643, 2008.

[34] C. Forbes, I. Keivanloo, and J. Rilling. Doppel-Code: A clone
visualization tool for prioritizing global and local clone impacts. In
COMPSAC, pages 366–367, 2012.

[35] M. Fowler, K. Beck, J.Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison Wesley, 1999.

[36] Y. Fukushima, R. Kula, S. Kawaguchi, K. Fushida, M. Nagura, and
H. Iida. Code clone graph metrics for detecting diffused code clones.
In APSEC, pages 373 –380, 2009.

[37] S. Giesecke. Generic modelling of code clones. In DRSS, pages 1–23,
2007.

[38] S. Giesecke. Dupman - Eclipse duplication management framework,
last access: Dec 2011. URL http://sourceforge.net/projects/dupman/.

[39] N. Göde and R. Koschke. Frequency and risks of changes to clones.
In ICSE, pages 311–320, 2011.

[40] N. Göde and R. Koschke. Studying clone evolution using incremental
clone detection. J. of Soft.: Evol. and Proc., 25(2):165–192, 2013.

[41] T. L Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault
incidence using software change history. IEEE Tran. on Soft. Engg.,
26(7):653–661, 2000.

[42] J. Harder. The limits of clone model standardization. In IWSC, pages
10–11, 2013.

[43] J. Harder and N. Göde. Quo vadis, clone management? In IWSC,
pages 85–86, 2010.

[44] J. Harder and N. Göde. Efficiently handling clone data: RCF and
cyclone. In IWSC, pages 81–82. ACM, 2011.

[45] J. Harder and N. Göde. Cloned code: stable code. Journal of Soft.:
Evol. and Proc., 25(10):1063–1088, 2013.

[46] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen. Data clone
detection and visualization in Spreadsheets. In ICSE, pages 292–301,
2013.

[47] Y. Higo and S. Kusumoto. Enhancing quality of code clone detection
with program dependency graph. In WCRE, pages 315 –316, 2009.

[48] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Refactoring support
based on code clone analysis. PROFES, pages 220–233, 2004.

[49] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto. Incremental code
clone detection: A PDG-based approach. In WCRE, pages 3 –12, 2011.

[50] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is duplicate code more
frequently modified than non-duplicate code in software evolution?:
an empirical study on open source software. In IWPSE-EVOL, pages
73–82, 2010.

[51] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for
the proactive management of copy-and-paste programming. In ICPC,
pages 238–242, 2009.

[52] D. Hou, F. Jacob, and P. Jablonski. Exploring the design space of
proactive tool support for copy-and-paste programming. In CASCON,
pages 188–202, 2009.

[53] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based
code clone detection: incremental, distributed, scalable. In ICSM, pages
1 –9, 2010.

[54] P. Jablonski and D. Hou. CReN: a tool for tracking copy-and-paste
code clones and renaming identifiers consistently in the IDE. In ETX,
pages 16–20, 2007.

[55] S. Jarzabek and S. Li. Unifying clones with a generative programming
technique: a case study. Journal of Software: Evolution and Process,
18(4):267–292, 2006.

[56] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable
and accurate tree-based detection of code clones. In ICSE, pages 96–
105, 2007.

[57] Z. Jiang and A. Hassan. A framework for studying clones in large
software systems. In SCAM, pages 203 – 212, 2007.

[58] Z. Jiang, A. Hassan, and R. Holt. Visualizing clone cohesion and
coupling. In APSEC, pages 467–476, 2006.

[59] J. Johnson. Substring matching for clone detection and change tracking.

In ICSM, pages 120 –126, 1994.
[60] J. Johnson. Visualizing textual redundancy in legacy source. In

CASCON, pages 32–41. IBM Press, 1994.
[61] J. Johnson. Navigating the textual redundancy web in legacy source.

In CASCON, pages 16–25. IBM Press, 1996.
[62] E. Juergens. Research in cloning beyond code: a first roadmap. In

IWSC, pages 67–68, 2011.
[63] E. Juergens and F. Deissenboeck. How much is a clone? In SQM,

2010.
[64] E. Juergens, F. Deissenboeck, and B. Hummel. CloneDetective - a

workbench for clone detection research. In ICSE, pages 603–606, 2009.
[65] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz,

S. Wagner, C. Domann, and J. Streit. Can clone detection support
quality assessments of requirements specifications? In ICSE, pages 79
–88, 2010.

[66] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic
token-based code clone detection system for large scale source code.
IEEE Trans. Softw. Eng., 28(7):654–670, 2002.

[67] C. Kapser. Toward an Understanding of Software Code Cloning as a
Development Practice. PhD thesis, University of Waterloo, 2009.

[68] C. Kapser and M. Godfrey. Cloning considered harmful” considered
harmful: patterns of cloning in software. Empirical Software Engineer-
ing, 13:645–692, 2008.

[69] C. Kapser and M. W. Godfrey. Aiding comprehension of cloning
through categorization. In IWPSE, pages 85–94, 2004.

[70] C. Kapser and M. W. Godfrey. Improved tool support for the
investigation of duplication in software. In ICSM, pages 305–314,
2005.

[71] C. Kapser and M. W. Godfrey. Supporting the analysis of clones in
software systems: A case study. J. Softw. Maint. Evol., 18:61–82, 2006.

[72] C. Kapser, J. Harder, and I. Baxter. A common conceptual model for
clone detection results. In IWSC, pages 72–73, 2012.

[73] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei,
M. Nagura, and H. Iida. SHINOBI: A tool for automatic code clone
detection in the IDE. In WCRE, pages 313–314, 2009.

[74] I. Keivanloo, C. K. Roy, and J. Rilling. SeByte: Scalable clone and
similarity search for bytecode. Science of Comp. Prog., pages –, 2013
(in press). doi: http://dx.doi.org/10.1016/j.scico.2013.10.006.

[75] J. Kerievsky. Refactoring to Patterns. Addison Wesley, 2004.
[76] H. Kim, Y. Jung, S. Kim, and K. Yi. MeCC: memory comparison-based

clone detector. In ICSE, pages 301–310, 2011.
[77] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An empirical study

of code clone genealogies. In FSE, pages 187–196, 2005.
[78] R. Komondoor and S. Horwitz. Using slicing to identify duplication

in source code. In SAS, pages 40–56, 2001.
[79] K. Kontogiannis. Evaluation experiments on the detection of program-

ming patterns using software metrics. In WCRE, pages 44 –54, 1997.
[80] R. Koschke. Survey of research on software clones. In DRSS, pages

1–24, 2006.
[81] J. Krinke. Is cloned code more stable than non-cloned code? SCAM,

0:57–66, 2008.
[82] G. P. Krishnan and N. Tsantalis. Unification and refactoring of clones.

In CSMR-18/WCRE-21 Software Evolution Week, page 10, 2014 (to
appear).

[83] B. Lague, D. Proulx, J. Mayrand, E. Merlo, and J. Hudepohl. Assessing
the benefits of incorporating function clone detection in a development
process. In ICSM, pages 314–321, 1997.

[84] S. Lee and I. Jeong. SDD: high performance code clone detection
system for large scale source code. In OOPSLA, pages 140–141, 2005.

[85] S. Lee, G. Bae, H. Chae, D. Bae, and Y. Kwon. Automated scheduling
for clone-based refactoring using a competent ga. Softw. Pract. Exper.,
41(5):521–550, 2010.

[86] H. Liu, Z. Ma, L. Zhang, and W. Shao. Detecting duplications in
sequence diagrams based on suffix trees. In APSEC, pages 269 –276,
2006.

[87] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. Very-large scale
code clone analysis and visualization of open source programs using
distributed CCFinder: D-CCFinder. In ICSE, pages 106–115, 2007.

[88] J. Mayrand, B. Lague, and J. Hudepohl. Evaluating the benefits of
clone detection in the software maintenance activities in large scale
systems. In WESS, 1996.

[89] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In
ICSM, pages 244 –253, 1996.

http://sourceforge.net/projects/dupman/


[90] M. Mondal, C. K. Roy, M. Rahman, R. K. Saha, J. Krinke, and K. A.
Schneider. Comparative stability of cloned and non-cloned code: An
empirical study. In ACM-SAC, pages 1227–1234, 2012.

[91] M. Mondal, C. K. Roy, and K. A. Schneider. An empirical study on
clone stability. ACM Applied Comp. Review, 12(3):20–36, 2012.

[92] M. Mondal, C. K. Roy, and K. A. Schneider. An insight into the
dispersion of changes in cloned and non-cloned code: A genealogy
based empirical study. Sci. of Comp. Prog., pages –, 2013 (in press).

[93] M. Mondal, C. K. Roy, and K. A. Schneider. Automatic ranking of
clones for refactoring through mining association rules. In CSMR-
18/WCRE-21 Software Evolution Week, page 10, 2014 (to appear).

[94] S. Nasehi, G. Sotudeh, and M. Gomrokchi. Source code enhancement
using reduction of duplicated code. In IASTED, pages 192–197, 2007.

[95] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Clone
management for evolving software. IEEE Trans. on Softw. Engg., 1(1):
1–19, 2011.

[96] T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Cleman:
Comprehensive clone group evolution management. In ASE, pages
451–454, 2008.

[97] T. Nguyen, H. Nguyen, J. Al-Kofahi, N. Pham, and T. Nguyen. Scalable
and incremental clone detection for evolving software. In ICSM, pages
491–494, 2009.

[98] T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Clone-
aware configuration management. In ASE, pages 123–134, 2009.

[99] J. Pate, R. Tairas, and N. Kraft. Clone evolution: a systematic review.
Journal of Soft.: Evol. and Proc., pages 1–23, 2011.

[100] N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, and T. Nguyen.
Complete and accurate clone detection in graph-based models. In ICSE,
pages 276–286, 2009.

[101] M. S. Rahman, A. Aryani, C. K. Roy, and F. Perin. On the relationships
between domain-based coupling and code clones: an exploratory study.
In ICSE, pages 1265–1268, 2013.

[102] D. Rattan, R. Bhatia, and M. Singh. Software clone detection: A
systematic review. Infor. and Soft. Tech., 55(7):1165 – 1199, 2013.

[103] M. Rieger, S. Ducasse, and M. Lanza. Insights into system-wide code
duplication. In WCRE, pages 100–109, 2004.

[104] C. K. Roy and J. R. Cordy. A survey on software clone detection
research. Tech Report TR 2007-541, Queens University, 2007.

[105] C. K. Roy and J. R. Cordy. NICAD: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization.
In ICPC, pages 172–181, 2008.

[106] C. K. Roy and J. R. Cordy. A mutation/injection-based automatic
framework for evaluating code clone detection tools. In ICSTW, pages
157–166, 2009.

[107] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach.
Sci. Comput. Program., 74:470–495, 2009.

[108] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K. Roy, and K. A.
Schneider. Evaluating code clone genealogies at release level: An
empirical study. In SCAM, pages 87–96, 2010.

[109] R. K. Saha, C. K. Roy, and K. A. Schneider. Visualizing the evolution
of code clones. In IWSC, pages 71–72. ACM, 2011.

[110] R. K. Saha, C. K. Roy, and K. A. Schneider. An automatic framework
for extracting and classifying near-miss clone genealogies. In ICSM,
pages 293 –302, 2011.

[111] R. K. Saha, C. K. Roy, and K. A. Schneider. gcad: A near-miss clone
genealogy extractor to support clone evolution analysis. In ICSM, pages
488–491, 2013.

[112] R. K. Saha, C. K. Roy, K. A. Schneider, and D. E. Perry. Understanding
the evolution of type-3 clones: an exploratory study. In MSR, pages
139–148, 2013.

[113] A. Santone. Clone detection through process algebras and Java
bytecode. In IWSC, pages 73–74. ACM, 2011.

[114] S. Schulze and M. Kuhlemann. Advanced analysis for code clone
removal. In WSR, pages 1–2, 2009.

[115] S. Schulze, M. Kuhlemann, and M. Rosenmüller. Towards a refactoring
guideline using code clone classification. In WRT, pages 6:1–6:4, 2008.

[116] N. Schwarz, M. Lungu, and R. Robbes. On how often code is cloned
across repositories. In ICSE-NIER, pages 1289–1292, 2012.

[117] H. Störrle. Towards clone detection in UML domain models. In ECSA,
pages 285–293, 2010.

[118] J. Svajlenko, I. Keivanloo, and C. K. Roy. Scaling classical clone
detection tools for ultra-large datasets: An exploratory study. In IWSC,
pages 16–22, 2013.

[119] J. Svajlenko, C. K. Roy, and J. R. Cordy. A mutation analysis based
benchmarking framework for clone detectors. In IWSC, pages 8–9,
2013.

[120] R. Tairas. Code clones literature, (last access: Dec. 2013). URL http:
//students.cis.uab.edu/tairasr/clones/literature/.

[121] R. Tairas and J. Gray. Phoenix-based clone detection using suffix trees.
In ACM-SE, pages 679–684, 2006.

[122] R. Tairas and J. Gray. Get to know your clones with CeDAR. In
OOPSLA, pages 817–818, 2009.

[123] R. Tairas and J. Gray. Increasing clone maintenance support by
unifying clone detection and refactoring activities. Info. & Soft. Tech.,
54(12):1297–1307, 2012.

[124] R. Tairas, J. Gray, and I. Baxter. Visualizing clone detection results.
In ASE, pages 549–550. ACM, 2007.

[125] M. Toomim, A. Begel, and S. Graham. Managing duplicated code with
linked editing. In VLHCC, pages 173–180, 2004.

[126] M. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle. On the
effectiveness of simhash for detecting near-miss clones in large scale
software systems. In WCRE, pages 13 –22, 2011.

[127] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Maintenance
support environment based on code clone analysis. In METRICS, pages
67–76. IEEE Computer Society Press, 2002.

[128] R. D. Venkatasubramanyam, S. Gupta, and H. K. Singh. Prioritizing
code clone detection results for clone management. In IWSC, pages
30–36, 2013.

[129] T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching for better config-
urations: a rigorous approach to clone evaluation. In ESEC/SIGSOFT
FSE, pages 455–465, 2013.

[130] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H. Mei. Can i
clone this piece of code here? In ASE, pages 170–179, 2012.

[131] V. Weckerle. CPC: an eclipse framework for automated clone life
cycle tracking and update anomaly detection. Master’s thesis, Freie
Universität Berlin, Germany, 2008.

[132] S. Xie, F. Khomh, and Y. Zou. An empirical study of the fault-
proneness of clone mutation and clone migration. In MSR, pages 149–
158, 2013.

[133] S. Xie, F. Khomh, Y. Zou, and I. Keivanloo. An empirical study on
the fault-proneness of clone migration in clone genealogies. In CSMR-
18/WCRE-21 Software Evolution Week, page 10, 2014 (to appear).

[134] Z. Xing, Y. Xue, and S. Jarzabek. Distilling useful clones by contextual
differencing. In WCRE, pages 102–111, 2013.

[135] Y. Yamanaka, E. Choi, N. Yoshida, K. Inoue, and T.i Sano. Apply-
ing clone change notification system into an industrial development
process. In ICPC, pages 199–206, 2013.

[136] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. On
refactoring support based on code clone dependency relation. In
METRICS, pages 16–25, 2005.

[137] G. Zhang, X. Peng, Z. Xing, and W. Zhao. Cloning practices: Why
developers clone and what can be changed. In ICSM, pages 285–294,
2012.

[138] G. Zhang, X. Peng, Z. Xing, S. Jiang, H. Wang, and W. Zhao. Towards
contextual and on-demand code clone management by continuous
monitoring. In ASE, pages 497–507, 2013.

[139] Y. Zhang, H. Basit, S. Jarzabek, D Anh, and M. Low. Query-based
filtering and graphical view generation for clone analysis. In ICSM,
pages 376 –385, 2008.

[140] M. F. Zibran and C. K. Roy. Towards flexible code clone detection,
management, and refactoring in IDE. In IWSC, pages 75–76, 2011.

[141] M. F. Zibran and C. K. Roy. A constraint programming approach to
conflict-aware optimal scheduling of prioritized code clone refactoring.
In SCAM, pages 105–114, 2011.

[142] M. F. Zibran and C. K. Roy. Conflict-aware optimal scheduling of
code clone refactoring: A constraint programming approach. In ICPC,
pages 266 – 269, 2011.

[143] M. F. Zibran and C. K. Roy. IDE-based real-time focused search for
near-miss clones. In ACM-SAC, pages 1235–1242, 2012.

[144] M. F. Zibran and C. K. Roy. Conflict-aware optimal scheduling of
prioritized code clone refactoring. IET Software, 7(3), 2013.

[145] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy. Analyzing
and forecasting near-miss clones in evolving software: An empirical
study. In ICECCS, pages 295–304, 2011.

[146] M. F. Zibran, R. K. Saha, C. K. Roy, and K. A. Schneider. Evalu-
ating the conventional wisdom in clone removal: a genealogy-based
empirical study. In SAC, pages 1123–1130, 2013.

http://students.cis.uab.edu/tairasr/clones/literature/
http://students.cis.uab.edu/tairasr/clones/literature/

	Introduction and Motivation
	A Systematic Review of Clone Literature
	Clone Management
	Definition of Code Clone
	Clone Management Activities

	Clone Detection
	Integrated Clone Detection
	Clone Documentation
	Clone Tracking
	Analysis of Clone Evolution
	Clone Annotation
	Techniques for Reengineering/Refactoring of Clones
	Analysis and Identification of Potential Clones for Refactoring
	Visualization of Distribution and Properties of Clones
	Cost-benefit Analysis and Scheduling of Refactoring

	Root causes for Code Duplication
	Clone Management Strategies
	Design Space for a Clone Management System
	Architectural Alternatives of Integration
	Triggering Actors in Clone Management
	Scope and Point in Time of Clone Management

	Industrial Adoption of Clone Management
	Conclusion

