
Genealogical Insights into the Facts and Fictions
of Clone Removal

Minhaz F. Zibran
University of Saskatchewan
minhaz.zibran@usask.ca

Ripon K. Saha
The University of Texas at Austin

ripon@utexas.edu

Chanchal K. Roy
University of Saskatchewan

croy@cs.usask.ca

Kevin A. Schneider
University of Saskatchewan

kas@cs.usask.ca

ABSTRACT
Clone management has drawn immense interest from the
research community in recent years. It is recognized that
a deep understanding of how code clones change and are
refactored is necessary for devising effective clone manage-
ment tools and techniques. This paper presents an empirical
study based on the clone genealogies from a significant num-
ber of releases of nine software systems, to characterize the
patterns of clone change and removal in evolving software
systems. With a blend of qualitative analysis, quantitative
analysis and statistical tests of significance, we address a
number of research questions. Our findings reveal insights
into the removal of individual clone fragments and provide
empirical evidence in support of conventional clone evolu-
tion wisdom. The results can be used to devise informed
clone management tools and techniques.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, and reverse engineering

General Terms
Experementation, Management, Measurement

Keywords
clone removal, clone evolution, refactoring, reengineering

1. INTRODUCTION
Duplicate or similar code fragments are known as code clones.
Previous studies report that software systems typically con-
tain 9%-17% [40] of code clones, and the proportion may
be as high as 50% [26, 27]. Code snippets that have iden-
tical source text except for comments and layout are called

Copyright is held by the authors. This work is based on an ear-
lier work: SAC’13 Proceedings of the 2013 ACM Symposium on
Applied Computing, Copyright 2013 ACM 978-1-4503-1656-9/13/03.
http://doi.acm.org/10.1145/2480362.2480573.
.

Type-1 (exact) clones. Syntactically similar code snippets,
where there may be variations in the names of the identi-
fiers/variables are known as Type-2 clones. Code fragments
that exhibit Type-2 clone similarity but also have other dif-
ferences such as added, deleted or modified statements are
Type-3 clones.

Code cloning is a popular code reuse mechanism that is used
to speedup the development process and facilitate indepen-
dent evolution of similar program units. However, the use of
code clones may be detrimental at times. For example, copy-
pasting a code fragment already containing an unknown bug
may cause fault propagation. Moreover, during the mainte-
nance phase, a change in a clone fragment may necessitate
consistent changes in all of its cloned fragments, and any
inconsistencies may introduce vulnerabilities [41, 42, 43].
Thus, code clones may have a significant impact on the de-
velopment and maintenance of software systems.

Despite ongoing research on the positive and negative ef-
fects of code clones [11, 12, 15, 21, 24, 25, 36], researchers
and practitioners have come to an accord for the need of
active and informed clone management [44, 45] including
documentation and removal of clones through refactoring.
However, code clones can often be desirable, and aggressive
removal of clones through refactoring may not be a good
idea [15, 41, 42, 43], given the risks and efforts involved
in such activities. In this regard, a number of classification
schemes [2, 13, 16, 33], metric based selection approaches [1,
4, 10], and an effort model [41, 42, 43] have been proposed
to identify potential clones for refactoring. Still, for many
systems, clone management and removal is yet to be a part
of the daily maintenance activities [8]. Despite more than
a decade of software clone research, clone management re-
mains far from industrial adoption, and this area has gained
more focus from the community in recent years [47].

A deep understanding of how individual clones change dur-
ing their evolution, and which criteria cause their removal
from the system, can help in devising effective strategies and
tool support for clone management. A number of studies on
near-miss clone evolution [30, 32, 40, 46] are found in the
literature, which attempt to inform clone management [39,
44, 47]. These studies on clone evolution and programmers’
psychology lead to some common beliefs and at times even
contradictions about the traits of clone evolution. For exam-
ple, the study of Kim et al. [15] suggests that many clones

are volatile (i.e., disappear shortly after they are created),
while the study of Lozano and Wermelinger [18] suggests
otherwise.

This paper focuses on the patterns of changes and removal
of code clones during the evolution of software systems. In
particular, we formulate the following eight research ques-
tions to capture different characteristics of clone change and
removal. Some of the research questions correspond to com-
mon beliefs (or, contradictions) in the community; but we
want to develop empirical evidence based on a systematic
genealogy-based study on clone change and removal in evolv-
ing software systems.

RQ1: Do the sizes of the groups of clones make any dif-
ference in clone removal in practice? — Kim et al. [14]
suspected that frequently copied code fragments (i.e., larger
clone-groups) can be good candidates for clone refactoring.

RQ2: Do the sizes of the individual clone fragments in terms
of the number of lines impact clone removal in practice?
— Larger clone fragments can be attractive candidates for
refactoring, as conjectured by Kim et al. [14].

RQ3: For a group of clones, does the distribution of the
clones in the file system hierarchy impact their removal in
practice? — Göde [8] reported that the developers were
more interested in refactoring closely located clones.

RQ4: Is there any relationship between any particular type
of changes in the clones and their removal? — This is still
an open question, as far as we are concerned. If there ex-
ists any relationship between a particular type of changes
and clone removal, the clone management tools can focus
on supporting that category of changes.

RQ5: How frequently do the clones experience changes be-
fore they are removed from the system? — There is an on-
going debate on the stability of code clones [9, 17, 20].

RQ6: Does the granularity (entire function bodies or syn-
tactic blocks) of clones make any difference in their removal
in practice? — A recent study of Göde [8] reported many
instances of removal of block clones by extract method refac-
toring.

RQ7: Does the textual similarity in the source code of the
clones have any effect in the removal of clones in practice?
— Very similar (e.g., Type-1) clones can be expected to be
easier to refactor than very dissimilar (e.g., Type-3) clones.

RQ8: During the evolution of the software systems, when
does clone removal take place? — This question addresses
the aforementioned contradiction about the volatility of clones.

To address the research questions, we carry out a systematic
study based on code clone genealogy [15, 31], which maps the
individual clone fragments across subsequent releases over
their evolution. We investigate the changes and removal of
individual clones in 329 releases of nine diverse open-source
software systems written in Java, C, and C#. Then we
analyze them against a wide range of metrics and character-
ization criteria. In the light of a combination of qualitative

Ri Ri+1 Ri+2 Ri+3

A

B

C

A

B

C

A

B

C

A

B

CN
o

C
ha

ng
e

N
o

C
ha

ng
e

A

B

C

A

B

C

A

B

C

C
on

si
st

en
t C

ha
ng

e

In
co

ns
is

te
nt

 C
ha

ng
e

A

B

C

A

B

C

A

B

C

A

B

C

C
on

si
st

en
t C

ha
ng

e

N
o

C
ha

ng
e

N
o

C
ha

ng
e

A

B

C

A

B

C

A

B

CN
o

C
ha

ng
e

N
o

C
ha

ng
e

A

C

In
co

ns
is

te
nt

 C
ha

ng
e

 Ri+4
(Last Release)

1

2

3

Figure 1. Different types of clone genealogies

analysis, quantitative analysis and statistical tests of signif-
icance, we derive the answers to the research questions.

We believe, such an empirical study on the characteristics of
changes and removal of individual near-miss clone fragments
is timely and addresses a gap in the literature. Our study is
based on genealogies of near-miss clones including not only
Type-1 and Type-2 clones, but also Type-3 clones. This
work is an extension to our previous work [46], which was the
first genealogy-based study on the evolution, changes, and
removal of near-miss code clones including Type-3. In this
work, we significantly extend our previous study by includ-
ing 101 more releases of three additional subject systems, an
additional research question, and more in-depth analysis.

The rest of this paper is organized as follows. In Section 2,
we introduce the terminology and metrics used in our study.
In Section 3, we describe the setup and procedure of our
empirical study. Section 4 presents the findings our study.
In Section 5, we discuss the possible threats to the validity
of our study. Section 6 accommodates related work, and
Section 7 concludes the paper.

2. TERMINOLOGY AND METRICS
In this section, we introduce the terminology and metrics
used in this paper to characterize the changes and removal
of code clones. Some of the metrics and and criteria are
adopted from earlier studies found in the literature [3, 7, 8,
15].

Clone Genealogy: A set of clone fragments that are clones
of each other form a clone-group. A clone genealogy refers
to a set of one or more lineage(s) originating from the same
clone-group, whereas, a clone lineage is a sequence of clone-
groups evolving over a series of releases of the software sys-
tem. Figure 1 shows several examples.

Consistent and Inconsistent Change: If all clones in
the clone-group experience the same set of changes during
the transition between releases, then such changes are char-
acterized as being a consistent change, otherwise the changes
are regarded as being inconsistent.

Table 1. Software systems subject to our empirical study

Prog. Subject No. of Releases Dates (mm/dd/yy) Duration Source Lines of Code
Lang. System Releases Start End Start End (months) (SLOC ranges)

dnsjava 50 0.9.2 2.1.1 04/19/99 02/10/11 131 6,290 – 15,018
Java JabRef 27 1.5 2.4.2 08/15/04 11/01/08 50 22,041 – 69,170

ArgoUML 48 0.27.1 0.32.beta2 10/04/08 01/24/11 26 176,618 – 202,555
ZABBIX 31 1.0 1.8.4 03/23/04 06/01/11 86 9,252 – 62,845

C Conky 28 1.1 1.8.1 06/20/05 10/05/10 62 6,555 – 39,810
Claws Mail 44 2.0.0 3.7.9 06/30/06 04/09/11 63 1,33,642 – 1,89,786
CruiseControl 31 0.7.rc1 1.8.4 11/08/04 09/01/13 98 35,895 – 1,82,032

C# iTextSharp 22 5.0.0 5.4.4 12/08/09 09/16/13 45 1,72,573 – 2,17,328
ZedGraph 48 1.1 5.1.5 08/02/04 12/12/08 52 2,439 – 26,433

Consistently Changed Clone-Group: If the genealogy
of a clone-group has any consistent change pattern(s) but
does not have any inconsistent change patterns during evo-
lution, it is classified as a consistently changed clone-group.
The clone-group associated with the second genealogy in
Figure 1 is an example of a consistently changed clone-group
as there is a consistent change between releases Ri+1 and
Ri+2.

Inconsistently Changed Clone-Group: If the geneal-
ogy of a clone-group has any inconsistent change pattern(s)
throughout the entire evolution period, it is characterized
as an inconsistently changed clone-group. The clone-group
associated with the third genealogy in Figure 1 is an in-
consistently changed clone-group as there is an inconsistent
change between releases Ri+2 and Ri+3.

Static, Alive, Dead Clone-Group: Static clone-groups
are those which propagate through subsequent releases hav-
ing no textual change in the clones. A clone-group is called
dead if it disappears before reaching the final release under
consideration, otherwise the clone-group is considered alive.
The clone-groups associated with the first, second and third
genealogies in Figure 1 represents static, dead, and alive
clone-groups respectively.

Textual Similarity: The textual similarity between two
code snippets S1 and S2, denoted by I(S1, S2), is determined
by calculating the identical lines with respect to their sizes,
as defined by the following formula1.

I(S1, S2) =
2× |`1 ∩ `2|
|`1|+ |`2|

(1)

where `1 and `2 are the ordered sets of pretty-printed lines
in S1 and S2 respectively. |`1 ∩ `2| is the number of com-
mon ordered lines between `1 and `2, calculated using the
longest common subsequence (LCS) algorithm. The textual
similarity of a clone-group G, denoted as I(G) is the aver-
age of the textual similarities between all clone pairs in that
group. Mathematically,

I(G) =

∑
Si,Sj∈G

I(Si, Sj)(|G|
2

) (2)

1In the area of Information Retrieval, this similarity mea-
surement is known as the Dice Coefficient.

Entropy of Dispersion: We used an entropy measure to
characterize the file level physical distribution of the clones
in a clone-group. Such an entropy measurement, sometimes
referred to as Shannon entropy, is commonly used in the
area of Information Theory. In this work, the entropy of
dispersion of the clones in clone-group G is calculated using
Equation 3 as follows:

entropy(G) =
∑
i∈FG

−pi log(pi) (3)

where, FG denotes the set of distinct files hosting the clones
in clone-groupG, and pi denotes the probability of the clones
being located in file i.

For example, if all the clone fragments reside in the same
file, the dispersion entropy will be 0.0. If the entropy is low,
clones are densely located in only a few files. If the entropy
is high, the clones are scattered across different files.

3. STUDY SETUP
To investigate the research questions outlined in Section 1,
we study the clone genealogies across releases of nine diverse
open-source software systems (Table 1) written in Java, C,
and C#.

In the selection of the subject systems, we followed a number
of criteria. First, we tried to include software systems that
had reasonably large sizes and large number of releases. In
computation of a system’s size, we took into account only
the source code lines (SLOC) written in the particular pro-
gramming language that the software system is categorized
in Table 1. We excluded comments, blank lines, and lines of
code written in any other programming languages. Second,
in our study, we tried to include subject systems from diverse
application domains. Third, we preferred those open-source
software systems, which were used in earlier studies [15, 30,
31, 40] reported in the literature.

3.1 Extraction of Genealogies
For the extraction of clone genealogies, we used an extended
version of gCad [31] clone genealogy extractor that we de-
veloped. gCad can construct and classify genealogies of all
three types (Type-1, Type-2, and Type-3) of clones that we
are interested in. Details of how gCad operates and com-
putes clone genealogies can be found elsewhere [31]. As per

Figure 2. gCad settings for genealogy extraction

the need of this study, we significantly extended and cus-
tomized the tool with a carefully designed graphical user
interface (GUI), and a set of appropriate features to com-
pute the necessary metrics. For the purpose of our study,
we carefully chose a set of gCad’s configuration parameters
as shown in Figure 2.

For the detection of code clones, we selected the NiCad-

2.6.3 [5, 6, 29] clone detector, which is a state-of-the-art
clone detection tool reported to be effective in detecting both
exact (Type-1) and near-miss (Type-2 and Type-3) clones
with high precision and recall [28, 29, 34]. gCad invokes
NiCad to separately detect clones from every release of each
of the subject systems. In invoking the clone detector, some
of the gCad parameters are passed to NiCad to guide the
process of detecting Type-1, Type-2, and Type-3 clones at
the chosen granularity (syntactic blocks for our study) and
dissimilarity threshold (0.3 for our study).

The dissimilarity threshold (Figure 2) is a size-sensitive dis-
similarity threshold that plays a vital role in guiding NiCad

in the detection of Type-3 clones. For our study, the dissim-
ilarity threshold was set to 0.3, which signifies that NiCad

detects two code fragments as clones if at least 70% of their
pretty-printed text lines are the same (i.e., if at most 30%
lines are different). The normalization option“blind-renaming”
tells NiCad to ignore the differences in the names of identi-
fiers/variables, and thus it is a significant parameter for the
detection of Type-2 clones.

From the clone detection results obtained from NiCad, for
each of the subject systems, we separately constructed the
clone genealogies using gCad. We operated gCad in ‘strict’
mode to construct and characterize clone genealogies. In
‘strict’ mode, gCad captures and takes into account all types
of changes in the source code lines of clone-pairs, irrespective
of whether those changes took place in their corresponding
similar or dissimilar lines of code. Details of how gCad op-
erates in different modes can be found elsewhere [31].

3.2 Investigation
We examined all the dead genealogies to see how the clones
were removed. We also examined how the individual clone
fragments changed during their evolution over a series of re-

leases. Since, the inconsistent changes to clones are believed
to be a common phenomena that produce vulnerabilities in
a system [40, 41, 43], we characterized the clone changes as
consistent versus inconsistent. In addition, we captured how
frequently a clone-group changes during the evolution before
its removal. For quantitative analysis, we computed the nec-
essary metrics according to the categorization described in
Section 2.

4. FINDINGS
The findings of our study are derived from qualitative and
quantitative analyses of the changes and removal of individ-
ual clone fragments. We also apply the statistical Mann-
Whitney-Wilcoxon (MWW) test [19] with α = 0.05, to de-
termine the statistical significance of the findings. Using the
Shapiro-Wilk test [19] and Q-Q plot [19], we examined the
distribution of the data, and found that some of the observa-
tions exhibited normal distributions while some others did
not. Therefore, we chose to use the MWW non-parametric
test, which does not assume the normal distribution of the
data, and thus, is appropriate for data that exhibit or do
not exhibit normal distribution.

4.1 Size of the Clone-Groups
To capture the relationship between the number of frag-
ments in a clone-group and clone removal, we computed the
average number of fragments in the removed clone-groups
and that of the alive clone-groups for each of the subject
systems (Table 2). As seen in Table 2, for all the subject
systems, the average size of the alive clone-groups is higher
than those of the removed clone-groups. During our man-
ual investigation, we found that the developers refactored
clone-groups that had only two or three clone fragments.
Similarly, we found that in JabRef, there were 74 clone-
groups having more than three fragments, and only four of
them were refactored. This gives the impression that de-
velopers are more inclined to remove smaller clone-groups.
To statistically verify this, we address the second research
question RQ1, and formulate our null hypothesis as follows.

H1
0 : The size of a clone group does NOT make a difference

in clone removal in practice.

A MWW test (P = 0.35) fails to reject (as, P > α) the null
hypothesis, which implies that the difference is not statis-
tically significant. Hence, we answer the research question
RQ1 as follows.

Ans. to RQ1: The size of the clone-groups (in terms of the
number of member clone fragments) does not make a statis-
tically significant difference in clone removal in practice.

Although, in our study, the sizes of the removed clone-groups
(in terms of the number of clone fragments) appears to be
consistently lower than the alive clone-groups, this might
have happened simply by chance in the software systems in
our study. A larger study with many software systems may
be required to further investigate the possibility of statistical
significance of the pattern we found between the sizes of the
clone-groups and their removal.

Table 2. Sizes of removed and alive clone-groups

Prog. Subject Avg. Sizes of Clone-groups
Lang. System Removed Alive

dnsjava 2.25 2.75
Java JabRef 2.31 4.17

ArgoUML 2.12 9.12
ZABBIX 2.31 4.53

C Conky 2.37 9.31
Claws Mail 2.88 2.95
CruiseControl 2.32 3.58

C# iTextSharp 2.21 5.80
ZedGraph 2.15 2.50

4.2 Size of the Clone Fragments
The sizes of the clone fragments can be expected to have
a relationship with the refactoring effort, especially when
the candidate clone-group includes near-miss (Type-2 and
Type-3) clones beyond Type-1.

To examine the relationship between clone removal and the
SLOC per clone fragment in the clone-groups, we separately
computed the average number of pretty-printed SLOC per
fragment for the removed clones as well as for the alive
clones. We also calculated the standard deviations for each
of the measurements to capture the degree of variations. The
results are presented in Table 3.

As can be observed from Table 3, there are subtle differ-
ences in the sizes of the clone fragments of both the re-
moved and alive clone-groups. For six of the nine subject
systems (ZabRef, ArgoUML, ZABBIX, Conky, iTextSharp, and
ZedGraph), the average sizes of clone fragments of removed
clone-groups appear to be significantly higher than those of
the alive clone-groups. Hence, the anticipation of Kim et
al. [14] saying – developers are more interested in getting
rid of larger clones – appears to be true.

Addressing the research question RQ2, we now formulate
our null hypothesis as follows.

H2
0 : The size of the individual clones in terms of number of

lines does NOT impact clone removal in practice.

A MWW test (P = 0.001) over the series of sizes for the re-
moved and alive clones rejects (as, P < α) the null hypoth-
esis. From the analysis described above, we answer research
question RQ2 as follows.

Ans. to RQ2: The size of the individual clones in terms of
number of lines does have a statistically significant impact on
clone removal in practice, and larger clone fragments appear
to be attractive for removal in practice.

4.3 Entropy of Dispersion
In Table 4, we present the entropy of dispersion of both
the removed and alive clones for all the subject systems.
From the developer’s perspective, refactoring/removal of co-
located clones may require less effort than that needed for
refactoring clones scattered over the code base. This can be

Table 3. Average sizes (SLOC) of clone fragments

Subject Removed Alive

S
D

=
S
ta

n
d
a
rd

D
ev

ia
ti

o
n

System Average SD Average SD
dnsjava 10.00 3.00 11.00 5.00
JabRef 17.00 15.00 13.00 9.00
ArgoUML 16.00 13.00 15.00 19.00
ZABBIX 26.00 25.00 21.00 21.00
Conky 20.00 23.00 15.00 7.00
ClawsMail 15.00 9.00 16.00 18.00
CruiseControl 8.85 4.50 9.46 5.61
iTextSharp 13.99 13.62 10.76 11.00
ZedGraph 15.70 15.45 12.34 12.67

expected to hold true due to several reasons. In the refactor-
ing of scattered clones the developers might need to spend
much time and effort to navigate to, understand the con-
texts, and make careful modifications at different locations
of the code base.

In Table 4, we see that for each of the subject systems, the
average entropy of dispersion for the removed clones is much
lower than that for the alive clones. This indicates those
clone-groups whose member clone fragments are closely lo-
cated in the code base are relatively more attractive for
refactoring/removal. To determine whether the initial ob-
servation significantly supports the expectation, we again
conducted a MWW test with the null hypothesis as follows.

H3
0 : For a group of clones, the distribution of individual

clones in the file system hierarchy does NOT impact
their removal in practice.

The hypothesis addresses the research question RQ3. A
MWW test (P = 0.233) between the entropy values for both
the removed and alive clones (over all the systems) fails to
reject (as, P > α) the null hypothesis. This implies that
there exists no relationship between the entropy of disper-
sion and clone removal in practice. Therefore, we derive the
answer to research question RQ3 as follows.

Ans. to RQ3: For a group of clones, the distribution of
individual clones in the file system hierarchy does not have a
statistically significant impact on their removal in practice.

As we delved deeper through manual investigation, we found
a strange phenomenon in the relationship between entropy
and the number of clone fragments that were removed. Most
of the removed clone-groups had two fragments, if their en-
tropy was greater than zero, i.e., they were not really located
in the same file. For example, in JabRef and ZABBIX, devel-
opers refactored 37 and 43 clone-groups respectively, all of
which had entropy higher than zero. Among them only two
clone-groups in JabRef and 10 clone-groups in ZABBIX had
three clone fragments, while the rest had only two fragments.

4.4 Change Patterns
Despite the realized advantages of code cloning, it is also
true that code clones may have a significant impact on soft-
ware development and maintenance in several ways. First,

Table 5. Removal of clone-groups classified by change patterns

Prog. Subject Static Clone-Groups Consistently Changed CG Inconsistently Changed CG
Lang. System Total Removed [%] Total Removed [%] Total Removed [%]

dnsjava 60 27 45.00 8 3 37.50 49 27 55.10
Java JabRef 217 52 23.96 53 3 5.66 132 15 11.36

ArgoUML 1435 109 7.60 39 4 10.26 440 19 4.31
ZABBIX 166 88 53.01 61 18 29.51 109 35 32.11

C Conky 121 44 36.36 19 7 36.84 37 16 43.24
ClawsMail 445 58 13.03 172 7 4.07 304 7 2.30
CruiseControl 528 187 35.41 119 35 29.41 388 133 34.27

C# iTextSharp 1259 99 7.86 103 8 7.76 325 66 20.31
ZedGraph 225 161 74.22 33 12 36.36 79 45 56.96

Table 4. Comparison of entropy of dispersion

Prog. Subject Clones
Lang. System Removed Alive

dnsjava 0.71 0.90
Java JabRef 0.53 0.98

ArgoUML 0.82 1.30
ZABBIX 0.35 0.53

C Conky 0.18 0.24
Claws Mail 0.30 0.70
CruiseControl 0.18 0.23

C# iTextSharp 0.22 0.38
ZedGraph 0.17 0.10

the reuse by copy-pasting of any code segment that already
contains unknown faults, results in propagation of those
faults to all the copies. Second, when a change is made
in a code fragment, consistent changes are often expected
in all its clone fragments, while any inconsistencies may in-
troduce new faults. Third, if a bug is found in a certain
code fragment, there remains a possibility that similar bugs
can be found in the clones of the fragment, and thus may
necessitate consistent propagation of that bug-fix to all the
clones.

Thus, whether the clones changed consistently, inconsistently,
or remained static during the evolution of a software sys-
tem, may have implications in clone management in fu-
ture releases. Therefore, we categorized the clones based
on whether they remained unchanged, or changed consis-
tently or inconsistently, and what percentage of such clones
were actually removed during the evolution of the system.
For each of the systems, the total number of clones of each
of these three categories and the percentage of them that
were removed, are presented in Table 5.

As we can see in Table 5, for each of the subject system, the
number of static clone-groups is the highest while the num-
ber of the consistently changed clone-groups is the lowest.
To examine any trends in the existence of static, consis-
tently changed, and inconsistently changed clone-groups in
the systems, we again conducted MWW tests between each
two of the three categories of changes (total number) oc-
curred in the clone-groups over all the systems. The results

Table 6. MWW tests over of categories of changes

Change
No Change

Consistent Inconsistent
Types Change Change

No Change - P = 0.003 P = 0.158

Consistent
P = 0.003 - P = 0.042Change

Inconsistent P = 0.158 P = 0.042 -
Change

Table 7. MWW tests over removal of clones

Clone Static Consistently Inconsistently
Categories Changed Changed

Static - P = 0.31 P = 0.695

Consistently P = 0.31 - P = 0.536Changed
Inconsistently P = 0.695 P = 0.536 -Changed

of the MWW tests are presented in Table 6, which suggest
significant difference in occurrence of the three categories of
changes (as, P < α), except that the difference in the num-
ber of inconsistent changes clones and no-changes are found
to be statistically insignificant (as, P > α).

With respect to clone removal, from Table 5, we see that
for six of the nine systems (JabRef, ZABBIX, ClawsMail,
CruiseControl, iTextSharp, and ZedGraph), the majority
of the removed clones are static clone-groups. The removal
of inconsistently changed clone-groups were found to oc-
cur most often in two of the systems (dnsjava and Conky),
whereas, the removal of consistently changed clones domi-
nated in ArgoUML.

A high-level perception from the results in the table may
indicate that the static clone-groups can be more susceptible
to removal. To verify such an observation, we carried out
MWW tests between each pair of the three categories of
clone removal over all the systems. The results of the MWW
tests, as presented in Table 7, also suggest that there is no
significant difference in the removal of static, consistently
changed and inconsistently changed clone-groups (as, P > α
in all cases).

Table 8. Frequency of changes before removal

Prog. Subject Change Frequency
Lang. System 1 2 >2 Average

dnsjava 16 9 5 1.80
Java JabRef 11 4 3 1.72

ArgoUML 17 4 2 1.48
ZABBIX 30 16 7 1.74

C Conky 10 8 5 1.95
ClawsMail 9 2 5 1.57
CruiseControl 103 45 20 0.75

C# iTextSharp 62 11 1 0.50
ZedGraph 40 12 5 0.39

These observations lead to the answer to the research ques-
tion RQ4 as follows.

Ans. to RQ4: The majority of the clones do not experi-
ence any changes during their evolution. Those clones that
experience changes, majority of those clone-groups undergo
inconsistent changes. However, there is no statistically sig-
nificant relationship between any particular type of changes
in the clones, and their removal at a later release.

4.5 Frequency of Changes
The frequency of changes to the clone-groups is an important
criterion in clone management, since changing source code
can be expensive, while making consistent changes to clones
may involve significant effort and risks. Indeed, the modifi-
cations of a clone fragment needing effort, and the required
effort can be multiplied by the size of the corresponding
clone-group, to make consistent changes to all clone frag-
ments in the clone-group. This is one of the areas where
clone management tool support may contribute by facilitat-
ing clone merging, or consistent change propagation.

Thus, we examined how frequently the clone-groups under-
went changes before their removal. In Table 8, we present
the number of clone-groups that, before removal, underwent
changes only once, twice, and more than twice. As seen in
the table, most of the removed clones were changed only
once. For the clone-groups that changed at least once, their
average change frequency is less than two, over all the sub-
ject systems. From our manual verification, we found that
very few clone-groups underwent changes more than twice
before their removal. On the other hand, we also found many
clone-groups remained alive although they experienced mi-
nor or significant changes. However, we confined our focus
to the changes of the removed clone-groups to get a complete
picture over the entire life-time of the clone-groups. Now, we
derive the answer to the research question RQ5 as follows.

Ans. to RQ5: Most clones do not undergo frequent changes
before their removal.

4.6 Level of Granularity
The extract method refactoring pattern is perhaps the most
highlighted technique for removing clones at the granularity
of syntactic blocks. Thus, we may expect evidence of many
instances of block clone removal. Alternatively, functions

typically contain a somewhat complete implementation of
certain features or program logic and so it may be easier to
remove/refactor clones at the granularity of entire function
bodies, rather than at the granularity of smaller syntactic
blocks.

To determine whether there exist any relationships between
clone removal and clone granularity, we examined both lev-
els of granularities – function/method and syntactic block.
Note that the body of a function also constitutes a block.
Therefore, we distinguish true functions clones from the true
block clones. A true function clone fragment spans the en-
tire body of a function, whereas a true block clone must not
constitute the entire body of a function.

Extended gCad is capable of differentiating true function
clones from the true block clones. Any clone-group that
is composed of only true function clones is categorized as
a group of function clones, whereas, clone-groups consisting
of only true block clones are categorized as groups of block
clones. Separate genealogies are constructed for the clones
at these two levels of granularity.

Over all releases of each of the subject systems, the to-
tal number and proportions of both the groups of func-
tion clones versus the block clones are presented in Table 9.
The clone detection results for each of the systems identified
clone-groups that contained both true function clones and
true block clones. Therefore, it is not possible to categorize
such a group as a group of only true function clones or only
true block clones. This is why the total number of clone-
groups reported in Table 9 is lower than that of Table 5.
Addressing the research question RQ6, we now formulate
our null hypothesis as follows.

H6
0 : The granularity (entire function bodies or syntactic blocks)

of clones does NOT make any difference in their re-
moval in practice.

A MWW test (P = 0.93) over the proportions of the removal
of both true function and block clones fails to reject (as,
P > α) the null hypothesis.

Table 9 shows that developers remove both function and
block clones as per their needs, as we do not see significant
differences between the proportions of removal of function
clones and block clones. For ZABBIX and Conky, the pro-
portion of block clones removal is slightly higher. It seems
that the clone removal rates for the two larger systems, Ar-
goUML and Claws Mail are far lower than the smaller sys-
tems. On the other hand, it appears that the developers
of the relatively small systems dnsjava, ZABBIX, and Conky

were more aware of the clones and were active in removing
them through refactoring. From manual investigation, we
found only one and two Type-1 function clones in dnsjava

and Conky respectively. Though as many as eight Type-1
function clones were found in ZABBIX, seven of them were
removed during the evolution of the system. Based on the
above discussion, we now derive the answer to the research
question RQ6 as follows.

Ans. to RQ6: In practice, the granularity (entire func-
tion bodies or syntactic blocks) of clones does not make any
statistically significant difference in their removal.

Table 9. Removal of clone-groups at the granularities of function and block

Prog. Subject Function Clones Block Clones
Lang. System Total Removed [%] Total Removed [%]

dnsjava 69 37 53.62 25 15 60.00
Java JabRef 204 41 20.09 110 21 19.09

ArgoUML 1183 97 8.19 305 20 6.55
ZABBIX 201 78 38.80 134 62 46.26

C Conky 115 35 30.43 59 30 50.84
Claws Mail 510 40 7.84 337 29 8.60
CruiseControl 889 354 39.82 1032 355 34.40

C# iTextSharp 999 186 18.62 1687 173 10.25
ZedGraph 229 162 70.74 337 218 64.69

Table 10. Actual and normalized textual similarity of removed and alive clone-groups

Actual Textual Similarity Normalized Textual Similarity

S
D

=
S
ta

n
d
a
rd

D
ev

ia
ti

o
nProg. Subject Removed Clones Alive Clones Removed Clones Alive Clones

Lang. System Average SD Average SD Average SD Average SD
dnsjava 0.60 0.20 0.67 0.18 0.80 0.12 0.81 0.10

Java JabRef 0.76 0.18 0.68 0.18 0.85 0.13 0.82 0.11
ArgoUML 0.76 0.20 0.66 0.17 0.85 0.14 0.80 0.14
ZABBIX 0.72 0.19 0.73 0.17 0.83 0.16 0.83 0.11

C Conky 0.76 0.16 0.69 0.15 0.88 0.09 0.84 0.09
Claws Mail 0.73 0.20 0.65 0.22 0.87 0.12 0.82 0.15
CruiseControl 0.67 0.19 0.68 0.18 0.83 0.09 0.84 0.09

C# iTextSharp 0.72 0.22 0.66 0.19 0.86 0.11 0.84 0.12
ZedGraph 0.80 0.22 0.70 0.22 0.91 0.14 0.87 0.14

4.7 Textual Similarity
In Table 10, we present the average text similarities (actual
and normalized) of the removed clones and the alive clones
for each of the subject systems. Indeed, the degree of textual
similarity among the clone fragments in a clone-group is im-
portant information as it corresponds to the differences be-
tween the clone fragments. Refactoring a clone-group with
many variations can require more effort than refactoring a
group of identical or very similar clones. Thus, the textual
similarity for the clones in a clone-group can be expected
to be proportional to the necessary efforts for refactoring
them. Taking these into consideration, we address the re-
search question RQ1, and formulate our null hypothesis as
follows:

H7a
0 : Clone removal by the developers is NOT dictated by

the similarity of program text (without normalization)
in the clone fragments.

From the table, we can see that the average actual textual
similarity of removed clones for four systems (JabRef, Ar-

goUML, Conky, and Claws Mail) is higher than that of alive
clones, while the other two subject systems (dnsjava and
ZABBIX) exhibit slightly the opposite trend. A MWW test
(P = 0.041), on the data of actual textual similarity in the
alive and removed clones, rejects (as, P < α) the null hy-
pothesis H7a

0 , which indicates statistically significant rela-
tionship between the textual similarity of clones and their
removal.

Sometimes the actual textual similarity does not estimate
the actual effort for refactoring. For example, in case of dif-
ferent identifiers names in different clone fragments, textual
similarity of a clone-group may be very low although they
are easily refactorable, especially when there is refactoring
support from the IDEs (Integrated Development Environ-
ments). That is why we also investigated the normalized
textual similarity by removing the identifier differences. If
we look at the normalized text similarities of removed and
alive clones, we again see that the average normalized tex-
tual similarity for the removed clones is slightly higher than
the alive clones in those four systems. The trend is slightly
the opposite for dnsjava, while for ZABBIX, both the removed
and alive clones exhibit equal average normalized textual
similarity. With respect to the normalized text similarities
between the remove and alive clones, we formulate another
hypothesis as follows:

H7b
0 : Clone removal by the developers is NOT influenced by

the similarity of normalized program text in the clone
fragments.

A MWW test (P = 0.091) fails to reject (as, P > α) the
null hypothesis H7b

0 , suggesting that there is no statistically
significant difference in the normalized text similarities be-
tween the removed and alive clones. However, the P value in
the case of normalized textual similarity is much lower than
that of the actual textual similarity, and this hints that there
might be some influence of the differences in the names of
variables/identifiers over clone removal.

Combining the observations for the actual and normalized
text similarities over the removed and alive clones, we can
now derive the answer to the research question RQ7 as fol-
lows.

Ans. to RQ7: The textual similarity in the source code
of the clones does have statistically significant effect in the
removal of clones, and the differences in the names of the
variable/identifiers play the major role in this regard.

This finding indicates that Type-1 clones are most attrac-
tive to the developer for refactoring, and the developers, in
practice, are more inclined in refactoring Type-2 clones than
refactoring Type-3.

4.8 Age
The information about the age (in terms of the number of re-
leases the clone-groups remain alive before removal) of clone
genealogies can indicate how quickly the developers act to
remove clones. In order to examine this phenomenon, for
each of the systems, we computed the age of each clone-
group that was removed in any of the subsequent releases.

In Figure 3, we present the proportion of clone-groups found
to have been removed in a subsequent releases. As the
figures (Figure 2(a), Figure 2(b), and Figure 2(c)) show,
majority of the dead clones in five of the subject systems
(ArgoUML, JabRef, ZABBIX, Conky, and ZedGraph) were re-
moved within the initial five to ten releases. This obser-
vation is consistent with that reported by Kim et al. [15],
suggesting that many of the clones are possibly volatile.

However, in all the systems, a good number clones remained
alive over a long sequence of releases before their removal.
For example, 17% of the refactored clone-groups in ArgoUML

remained alive in 43 subsequent releases, while 35% of the
clone-groups in Claws Mail propagated over 27 subsequent
releases, before their removal. Similar trends were found in
other systems as well. From the above discussion, we answer
the research question RQ8 as follows.

Ans. to RQ8: During the evolution of the software sys-
tems, a few early releases experience significant clone re-
moval. Nevertheless, some clones propagated over a rela-
tively long sequence of releases before they were finally re-
moved.

This finding is also in keeping with the answer to the re-
search question RQ5 (Section 4.5), which indicates that
most of the clones do not undergo frequent changes before
their removal. We suspect that once a developer comes to
know of a clone during its first change, this awareness might
drive the removal of the clone at a later release. This indi-
cates an area where informed clone management can play a
significant role.

5. THREATS TO VALIDITY
In this section, we discuss possible threats to the validity of
our study and how we mitigated their effects.

Construct Validity: Perhaps the best way to investigate
change and evolution of clones is to study of the individual
clone fragments in terms of genealogies across versions of the

Systems written in Java

(Releases)

(a)

Systems written in C

(Releases)

(b)

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

55"

60"

65"

70"

1" 6" 11" 16" 21" 26" 31" 36" 41" 46"5 10 15 20 25 30 35 40 45

C
lo

ne
 R

em
ov

al
 (

%
)

ZedGraph

iTextSharp

CruiseControl

Systems written in C#

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Age (Releases)

(c)

Figure 3. Clone removal over sequences of releases

system. As versions one might choose programmers’ com-
mit transactions or weekly/monthly snapshots of the code
base, or the stable releases of the system. A number of the
earlier studies [8, 15] used the programmers’ commit trans-
actions or weekly/monthly snapshots of the code base, while
many other studies [30, 31, 40] used software releases as the
versions.

Programmers often create clones for experimental purposes,
which they remove shortly after creation [15]. Thus, daily,
weekly or monthly snapshots can be too frequent to capture
stable changes in the code base. Indeed, commit transac-
tions are more susceptible to this issue, in addition to their
sensitivity to the developers’ commit styles [40]. However,
when a version of a software is officially released, the source
code is expected to be in a stable form. Moreover, even a
large number of weekly/monthly revisions may correspond
to only a few stable releases, whereas series of releases typi-
cally span a longer period of development time. Therefore,
for our study, we selected stable releases of the systems in-
stead of commit transactions or snapshots at certain time
intervals.

Internal Validity: The internal validity of our study is
subject to the accuracy in clone detection and genealogy
extraction. The NiCad clone detector used in our study, is
reported to be effective in detecting both exact (Type-1)
and near-miss (Type-2 and Type-3) clones with high preci-
sion and recall [28, 29]. Moreover, our manual verification of
random samples from the detected clones found no false pos-
itives. The genealogy extractor gCad, used in our study, is
also reported to be accurate in the computation of near-miss
clone genealogies [31]. Nevertheless, we carried out manual
investigation to verify the correctness of the genealogies and
to fix any inconsistencies. Indeed, the manual assessment
can be subject to human errors. However, all the human
participants of this study are faculty and graduate students
carrying out research in the area of software clones, and
thus we believe that they have affluent expertise to keep the
probable human errors to the minimum.

External Validity: Our study is based on nine medium to
fairly large open-source software systems, and thus one may
question the generalizability of the findings. However, for
each of the subject systems, we studied a significant number
of releases, and we expect this to help minimize the threat
to some extent. To further mitigate the threat, we care-
fully chose the subject systems from different application
domains, and written in different programming languages.

Reliability: The methodology of this study including the
procedure for data collection are documented in this pa-
per. The subject systems are open-source, while the NiCad-

2.6.3 clone detector and the gCad genealogy extractor are
also available online2. Therefore, it should be possible to
replicate the study.

6. RELATED WORK
There has been considerable research in characterizing clone
evolution and distinguishing clones of interest for removal by
refactoring.

2http://usask.ca/∼minhaz.zibran/pages/projects.html

From a manual analysis of 800 function/method level clones
over six different open-source Java systems, Balazinska et
al. [2] proposed a taxonomy of function clones, based on
the differences and similarities in the program elements. On
the basis of the location of clones in the inheritance hierar-
chy, Koni-N’Sapu [16] proposed another clone taxonomy and
a set of object-oriented refactoring patterns for refactoring
each category of code clones. Later, Kapser and Godfrey [13]
proposed a clone taxonomy based on the locations of clones
in the file-system hierarchy and (dis)similarities in the code
functionalities.

Schulze et al. [33] proposed a code clone classification scheme
to support the decision of whether to use Object-Oriented
Refactoring (OOR) or Aspect Oriented Refactoring (AOR)
for clone removal. Other techniques, such as design pat-
terns [1] and traits [22] were also attempted to identify and
refactor clones of interest. Torres [37] applied a concept-
lattice based data mining approach to derive four categories
of concepts containing duplicated code and suggested refac-
toring patterns suitable for refactoring clones in each of the
categories.

Higo et al. [10] proposed a software-metrics-based approach
to identify potential clones that can be easier to refactor us-
ing the extract method and pull-up method refactoring pat-
terns. Variations of such metrics-based approaches are re-
alized in tools namely Gemini [38] and ARIES [10]. Choi et
al. [4] carried out a developer-centric study to determine the
effectiveness of different combinations of metrics in distin-
guishing clones of interest for refactoring.

None of the aforementioned work was based on code clone
genealogies as ours, where we examined the evolution of
individual clone fragments to characterize the patterns of
change and removal of clones. Based on the experience
from an ethnographic study on copy and paste programming
practices, Kim et al. [14] reported that “larger or frequently
copied code fragments are good candidates for refactoring.”
The findings of our study also to support their conjecture.

Based on a case study on two open source Java systems,
Tairas and Gray [35] reported that in some cases clone refac-
torings were partially performed on only parts of the clones
(i.e., sub-clones). However, their focus was only on the oc-
currences of refactorings composed of the extract method
refactoring pattern. The objective of our work was to in-
vestigate and characterize removal and refactoring of clones
not only through the extract method refactoring patterns,
but also by all other possible means.

Göde [8] conducted a case study over four systems, and in-
vestigated the extent clones were removed from the systems.
He found many instances of deliberate clone removal, and
the majority of those removals were performed by the ex-
tract method refactoring pattern. He further reported that
the developers refactored mostly the closely located clones,
which is also consistent with our findings.

The study of Göde was based on only three metrics, and
he concluded that more complex metrics such as change fre-
quency of clones should be examined to better understand
the phenomenon. In our study, based on clone genealogies
over 329 releases of nine software systems and using a wide

range of characterization criteria, we captured a broader pic-
ture of clone removal and changes in open-source software
systems.

7. CONCLUSION
This paper presents a genealogy-based empirical study on
the evolution of individual clone fragments to characterize
the changes and removal of exact (Type-1) and near-miss
(Type-2 and Type3) code clones. We examined a total of
329 releases from nine open-source software systems written
in Java, C, and C#.

In the study, we addressed eight research questions, and
derived answers to those with a combination of qualitative
and quantitative analyses as well as statistical tests of signif-
icance. The findings of our study shed light on the conven-
tional wisdom about clone evolution, in particular, derive
useful insights into the patterns of changes and removals of
code clones in practice.

From the study, we found that the sizes of the clone-groups
(in terms of the number of member clone fragments), or the
granularity (i.e., functions or blocks) of clones, or their dis-
persion in the file-system hierarchy do not have any signifi-
cant effect on clone removal in practice. In terms of change
patterns, we did not find any relationships between clone
removal and any particular type of changes (i.e., consistent
or inconsistent).

However, highly similar or larger clone fragments appear to
be attractive for removal. A few early releases of the software
systems experienced significantly more changes and removal
of clones than the later releases. Inconsistent changes are
found to have dominated over consistent changes of code
clones. We also found that the majority of clones that
were removed, did not experience frequent changes before
removal, and surprisingly, most of those clones underwent
changes only once, before they were removed from their re-
spective systems.

During manual investigation, we discovered many instances
of clones, which could be attractive for refactoring, but those
were left alone, perhaps due to the lack of proper tool sup-
port. We believe that the practical findings from this study
make significant contributions to the existing wisdom about
clone evolution, refactoring, and removal, which in turn, will
be useful for devising effective tools and techniques for in-
formed clone management.

Acknowledgement: This work is supported in part by the
Walter C. Sumner Memorial Foundation.

8. REFERENCES
[1] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and

K. Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In Proc. of the 7th
Working Conference on Reverse Engineering, pp.
98–107, 2000.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Measuring clone based reengineering
opportunities. In Proc. of the 6th International
Symposium on Software Metrics, pp. 292–303, 1999.

[3] D. Cai and M. Kim. An empirical study of long-lived
code clones. In Proc. of the International Conference
on Fundamental Approaches to Software Engineering,
pp. 432–446, 2011.

[4] E. Choi, N. Yoshida, T. Ishio, K. Inoue, and T. Sano.
Extracting code clones for refactoring using
combinations of clone metrics. In Proc. of the 5th
International Workshop on Software Clones, pp. 7–13,
2011.

[5] J. Cordy and C. Roy. The NiCad clone detector. In
Proc. of the Tool Demo Track of the 19th
International Conference on Program Comprehension,
pp. 219–220, 2011.

[6] J. Cordy and C. Roy. Tuning research tools for
scalability and performance: the NiCad experience. In
Science of Computer Programming, 79(1):158–171,
2014.

[7] N. Göde and R. Koschke. Frequency and risks of
changes to clones. In Proc. of the 33rd International
Conference on Software Engineering, pp. 311–320,
2011.

[8] N. Göde. Clone removal: fact or fiction? In Proc. of
the 4th International Workshop on Software Clones,
pp. 33–40, 2010.

[9] N. Göde and J. Harder. Clone stability. In Proc. of the
15th European Conference on Software Maintenance
and Reengineering, pp. 65–74, 2011.

[10] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Aries: Refactoring support environment based on code
clone analysis. In Proc. of the 8th IASTED
International Conference on Software Engineering and
Applications, pp. 222–229, 2004.

[11] E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner. Do code clones matter? In Proc. of the
31st International Conference of Software
Engineering, pp. 485–495, 2009.

[12] C. Kapser and M. Godfrey, “Cloning considered
harmful” considered harmful: patterns of cloning in
software entities, In Journal of Empirical Software
Engineering, 13(6):645–692, 2004.

[13] C. Kapser and M. Godfrey. Aiding comprehension of
cloning through categorization. In Proc. of the 7th
International Workshop on Principles of Software
Evolution, pp. 85–94, 2004.

[14] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In Proc. of the International
Symposium on Empirical Software Engineering, pp.
83–92, 2004.

[15] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. In Proc. of
the Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, pp. 187–196, 2005.

[16] G. Koni-N’Sapu. A scenario based approach for
refactoring duplicated code in OO systems. Diploma
thesis, University of Bern, 116 pp., 2001.

[17] J. Krinke. Is cloned code more stable than non-cloned
code? In Proc. of the 8th International Conference on
Source Code Analysis and Manipulation, pp. 57–66,
2008.

[18] A. Lozano and M. Wermelinger. Tracking clones’
imprint. In Proc. of the 4th International Workshop
on Software Clones, pp. 65–72, 2010.

[19] D. Anderson, D. Sweeney, and T. Williams. Statistics
for Business and Economics. Thomson Higher
Education,10th Edition, 2009.

[20] M. Mondal, C. Roy, M. Rahman, R. Saha, J. Krinke,
and K. Schneider. Comparative stability of cloned and
non-cloned code: An empirical study. In Proc. of the
27th ACM Symposium On Applied Computing (SE
Track), pp., 1227–1234, 2012.

[21] M. Mondal, C. Roy, and K. Schneider. An empirical
study on clone stability. In Applied Computing Review,
12(3):20–36, 2013.

[22] E. Murphy-Hill, P. Quitslund, and A. Black.
Removing duplication from java.io: a case study using
traits. In Proc. of the ACM SIGPLAN conference on
Systems, Programming, Languages and Applications,
pp. 282–291, 2005.

[23] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and
T. Nguyen. Clone management for evolving software.
In IEEE Transaction on Software Engineering,
38(5):1008–1026, 2011.

[24] J. Pate, R. Tairas, and N. Kraft. Clone evolution: a
systematic review. In Journal of Software: Evolution
and Process , 25(3): 261–283, 2013.

[25] F. Rahman, C. Bird, and P. Devanbu. Clones: what is
that smell? In Proc. of the 7th Working Conference on
Mining Software Repository, pp. 72–81, 2010.

[26] M. Rieger, S. Ducasse, and M. Lanza. Insights into
system-wide code duplication. In Proc. of the 11th
Working Conference on Reverse Engineering, pp.
100–109, 2004.

[27] C. Roy and J. Cordy. A survey on software clone
detection research, Technical Report 2007-541, School
of Computing, Queen’s University, 115 pp., 2007.

[28] C. Roy and J. Cordy. A mutation/ injection-based
automatic framework for evaluating code clone
detection tools. In Proc. of Mutation, pp. 157–166,
2009.

[29] C. Roy and J. Cordy. NiCad: Accurate Detection of
Near-Miss Intentional clones using flexible
pretty-printing and code Normalization. In Proc. of
the 16th International Conference on Program
Comprehension, pp. 172–181, 2008.

[30] R. Saha, M. Asaduzzaman, M. Zibran, C. Roy, and
K. Schneider. Evaluating code clone genealogies at
release level: an empirical study. In Proc. of the 10th
International Conference on Source Code Analysis and
Manipulation, pp. 87–96, 2010.

[31] R. Saha, C. Roy, and K. Schneider. An automatic
framework for extracting and classifying near-miss
clone genealogies. In Proc. of the International
Conference on Software Maintenace, pp. 293–302,
2011.

[32] R. Saha, C. Roy, K. Schneider, and D. Perry.
Understanding the evolution of Type-3 clones: an
exploratory study. In Proc. of the 10th Working
Conference on Mining Software Repositories, pp.
139–148, 2013.

[33] S. Schulze, M. Kuhlemann, and M. Rosenmüller.
Towards a refactoring guideline using code clone

classification. In Proc. of the 1st Workshop on
Refactoring Tools, pp. 6:1–6:4, 2008.

[34] J. Svajlenko, C. Roy, and J. Cordy. A mutation
analysis based benchmarking framework for clone
detectors. In Proc. of the Tool Demonstration Track of
the 7th International Workshop on Software Clones,
pp. 8–9, 2013.

[35] R. Tairas and J. Gray. Sub-clones: Considering the
part rather than the whole. In Proc. of the 9th
International Conference on Software Engineering
Research and Practice, pp. 284–290, 2010.

[36] S. Thummalapenta, L. Cerulo, L. Aversano, and
M. D. Penta. An empirical study on the maintenance
of source code clones. In Journal of Empirical
Software Engineering, 15(1):1–34, 2009.

[37] R. Torres. Source code mining for code duplication
refactorings with formal concept analysis. M.Sc.
thesis, Vrije Universiteit Brussel, 53 pp., 2004.

[38] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue.
Gemini: Maintenance support environment based on
code clone analysis. In Proc. of the 9th International
Symposium on Software Metrics, pp. 67–76, 2002.

[39] R. Venkatasubramanyam, S. Gupta, and H. Singh.
Prioritizing Code Clone detection results for clone
management. In Proc. of the 7th International
Workshop on Software Clones, pp. 30–36, 2013.

[40] M. Zibran, R. Saha, M. Asaduzzaman, and C. Roy.
Analyzing and forecasting near-miss clones in evolving
software: an empirical study. In Proc. of the 16th
International Conference on Engineering of Complex
Computer System, pp. 295–304, 2011.

[41] M. Zibran and C. Roy. A constraint programming
approach to conflict-aware optimal scheduling of
prioritized code clone refactoring. In Proc. of the 11th
International Conference on Source Code Analysis and
Manipulation, pp. 105–114, 2011.

[42] M. Zibran and C. Roy. Conflict-aware Optimal
Scheduling of Code Clone Refactoring: A Constraint
Programming Approach. In Proc. of the 19th
International Conference on Program Comprehension,
pp. 266–269, 2011.

[43] M. Zibran and C. Roy. Conflict-aware optimal
scheduling of code clone refactoring. In IET Software,
7(3):167–186, 2013.

[44] M. Zibran and C. Roy. Towards flexible code clone
detection, management, and refactoring in IDE. In
Proc. of 5th the International Workshop on Software
Clones, pp. 75–76, 2011.

[45] M. Zibran and C. Roy. IDE-based real-time focused
search for near-miss clones. In Proc. of the 27th ACM
Symposium On Applied Computing (SE Track), pp.
1235–1242, 2012.

[46] M. Zibran, R. Saha, C. Roy, and K. Schneider.
Evaluating the conventional wisdom in clone removal:
A genealogy-based empirical study. In Proc. of the
28th ACM Symposium On Applied Computing (SE
Track), pp. 1123–1130, 2013.

[47] M. Zibran and C. Roy. The road to software clone
management: A survey. Tech. Report 2012-03,
Department of Computer Science, University of
Saskatchewan, Canada, pp. 1–62, 2012.

ABOUT THE AUTHORS:

Minhaz F. Zibran is a Ph.D. candidate at the Department of Computer Science,
University of Saskatchewan, Canada. His research interests include various aspects
of software engineering with particular focus on the detection, analysis, and
management of code clones in evolving software systems. Minhaz has co-authored
scholarly articles published in ACM and IEEE sponsored international conferences
and reputed journals. Throughout his career, Minhaz also earned both teaching and
industry experience. He has been actively involved in organizing international
conferences (e.g., ICPC'2011, SCAM'2012, ICPC'2012, WCRE'2012, ICSM'2013)
in his area of research. His scholarly excellence enabled him earning many
scholarships and awards including the postgraduate scholarship from the Natural
Science and Engineering Research Council (NSERC) of Canada.

Ripon K. Saha is a Ph.D. student in the Department of Electrical and Computer
Engineering at The University of Texas at Austin. He received his B.Sc. degree in
Computer Science and Engineering from Khulna University, Bangladesh and M.Sc.
degree in computer science from University of Saskatchewan, Canada. His research
interests include program analysis, mining software repositories, and empirical
software engineering.

Chanchal Roy is an assistant professor of Software Engineering/Computer Science
at the University of Saskatchewan, Canada. While he has been working on a broad
range of topics in Computer Science, his chief research interest is Software
Engineering. In particular, he is interested in software maintenance and evolution,
including clone detection, analysis and management, reverse engineering, empirical
software engineering, and mining software repositories. He served or has been
serving in the program committee of major software engineering conferences (e.g.,
ICSM, WCRE, MSR, ICPC and SCAM). He served as the Finance Chair for
ICPC’11, Tool Co-chairs for ICSM’12 and WCRE’12, Tool Chair for SCAM’12,
Poster Co-chair for ICPC’12, Program Co-chair for IWSC’12, and Finance Chair for
ICSM’13. He has been working as the General Chair for ICPC’14.

Dr. Kevin Schneider is a Professor of Computer Science, Special Advisor ICT
Research and Director of the Software Research Lab at the University of
Saskatchewan. Dr. Schneider has held appointments as Computer Science
Department Head, Vice-Dean Science, and Acting Chief Information Officer and
Associate Vice-President Information and Communications Technology. Before
joining the University in 2001, Dr. Schneider was CEO and President of Legasys
Corp., a software research and development company specializing in design
recovery and automated software engineering. His research investigates models,
notations and techniques that are designed to assist software project teams develop
and evolve large, interactive and usable systems. Dr. Schneider is a member of the
ACM and IEEE CS, an elected member of the International Federation for
Information Processing working group 2.7/13.4 on user interface engineering and
past Prairie representative for the Canadian Association of Computer Science.

