
Insights into Continuous Integration Build Failures

Md Rakibul Islam
University of New Orleans, USA

Email: mislam3@uno.edu

Minhaz F. Zibran
University of New Orleans, USA

Email: zibran@cs.uno.edu

Abstract—Continuous integration is prevalently used in mod-
ern software engineering to build software systems automati-
cally. Broken builds hinder developers’ work and delay project
progress. We must identify the factors causing build failures.

This paper presents a large empirical study to identify the
factors such as, complexity of a task, build strategy and con-
tribution models (i.e., push and pull request), and projects level
attributes (i.e., sizes of projects and teams), which potentially
have impacts on the build results. We have studied 3.6 million
builds over 1,090 open-source projects. The derived results add
to our understanding of the role of those factors on build results,
which can be used in minimizing build failures.

I. INTRODUCTION

Continuous integration (CI) systems provide facilities for

automatic compilation, building, testing and deployment of a

software [7] usually triggered by a unit of changes committed

to a larger code base. Since its inception in 1991 as one

of the twelve Extreme Programming (XP) practices [4], CI

has become a widely accepted practice in software develop-

ment community [5]. Although CI is continuously gaining

popularity in software engineering, it has received very little

attention from the research community [7], [6]. Despite having

few quantitative studies [7], [9], [10], [11] on CI, research

community lack quantifiable evidence on the implications of

adoption and use of CI [6].

While the usage of CI improve the productivity and quality

of software products [11], broken builds halt the develop-

ment work of the entire team for a significant amount of

time [8]. Thus, we must identify the factors that cause build

failures. If we can identify those factors, developers can take

cautious measurements to minimize their impacts and thus

can substantially reduce development time. In this work, we

quantitatively examine various development factors that cause

broken builds. In particular, we address the following three

research questions.

RQ1: Is there any relationship between the complexity of a
task and CI build failure i.e., broken build?
— We hypothesize that a task with higher complexity increases

the likelihood of a build failure. Kerzazi et al. [8] reported

that probability of a build failure increases with the increase

in number of changed code lines and number of changed files

(that are parts of the factors to measure complexity of a task)

included in a push initiating the build. We will verify their

findings by conducting an in-depth analysis using a larger

dataset.

RQ2: Do the build strategies, and the developers’ contribution
models have any impact on CI build failures?

— A build strategy (i.e., choosing a build tool to run a build at

a specific time in a particular build branch) can have impacts

on the build results. For example, developers typically take

more care when writing changes to a master branch than to a

non-master branch, which can be related to higher number of

successful builds in the master branch [7].

Again, different features (e.g., readability and simplicity of

the build configuration files) offered by the different build tools

may play role in build results (e.g., successful or broken).

In the similar way, developers contribution models such as,

direct push and pull request can be attributed to build results.

Here, we want to examine all those causal relationships using

quantitative analyses. Findings from our examination can help

a development manager to set his build strategy and to choose

a suitable contribution model for a project to prevent build

failures.

RQ3: Do the sizes of teams and projects have any correlation
with CI build failure?

— Dependencies among the team members and even among

code components can be increased when the sizes of the team

and the project are large. Such dependencies, particularly in

code, are susceptible to broken builds [9]. Identifying any

correlation between the build failures and the sizes of teams

and projects will be helpful for developers to be more cautious

to prevent build failures when those sizes become large.

II. DATA COLLECTION

To address the aforementioned research questions, we col-

lect the snapshot revision travistorrent 11 1 2017.csv.gz of a

large dataset prepared by Beller et al. [6]. The collected dataset

(i.e., snapshot) consists of source code and builds’ information

of 1,300 software projects developed in Java and Ruby.

All those information are collected from three different

sources (1) Travis CI- a CI tool (2) GIT- a version control

system and (3) GitHub- a collaboration platform. Then, those

collected information are combined together to prepare the

dataset. For example, for a particular build, the dataset consists

of the attributes such as, build ID, build status/result, build
duration and build tool, which are collected from the Travis CI.
Then, those attributes are combined with other attributes such

as, number of changed code lines and changed files, commit
ID and number of commits of that build, which are collected

from GIT and GitHub. Further details about the dataset can

be found elsewhere [6].

To ensure a project has used CI service sufficiently, we

select only those projects from the aforementioned dataset,

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.30

467

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.30

467

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.30

467

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.30

467

which have meet the two criteria– (1) projects using a CI

service for at least one year, (2) projects having at least 100

builds regardless of their success or failure status. In this way,

we select 1,090 software projects consists of 3.6 million builds

for the study.

Categorization of Builds Results: In the final dataset we

find five types of build results such as passed, failed, errored,
canceled and start. We exclude all the builds, which have

start status, as their final results are unknown [5]. We consider

the build result passed as successful and the remaining build

results are termed as unsuccessful throughout the paper.

III. ANALYSIS AND FINDINGS

The research questions RQ1, RQ2 and RQ3 are respectively

addressed in Section III-A, Section III-B and in Section III-C.

To verify the statistical significance of the results derived from

our quantitative analysis, we also apply the statistical Mann-
Whitney-Wilcoxon (MWW) test [3] with α = 0.05 for RQ1 and

RQ3. We use Chi-squared [12] test of independence with the

same value of α for RQ2. To measure the effect sizes, we

use Cohen’s d [1] value and Cramer’s V [2] value along with

MWW test and Chi-squared test, respectively.

A. Analysis of Complexity of a Task

We consider the complexity of a task is higher if the number

of code churns, the number of changed files and the number

of built commits in a single push for that task are higher.

In our investigation, we use both source code churn and test

code churn separately that will give us deeper level insights

of impacts of code churn on build results.

Source Code Churn (SCC). SCC is defined as the number

of changed lines i.e., lines added, deleted and modified to

the files in a build. We investigate whether the number of

SCC in a single build have any relationship with unsuccessful
build. To do that for each of the selected projects, we compute

the average number of SCC per build in both successful and

unsuccessful builds. The box-plots in Figure 1a present the

distributions of the computed averages of SCC per build in

logarithmic scale for each of the projects in each type of

the build results (i.e., successful and unsuccessful). The ‘x’

mark indicates the average number of SCC per build over all

the projects. We notice from Figure 1a that both the median

and average of SCC over all the projects are higher in the

unsuccessful builds compared to those in the successful builds.

To determine the statistical significance of the observation,

we conduct a MWW test between the distributions of average

scores of SCC in each type of the build results for all the

projects. The computed P-value (P = 2.74 × 10−15, P < α)

reveals that the difference is statistically significant. Moreover,

the Cohen’s d test returns the value 0.34, which suggests that

the effect size is medium between the distributions of the

average scores of SCC in each type of the build results for

all the projects.

Test Code Churn (TCC). Again, we compute the average

number of TCC per build in both successful and unsuccessful
builds for each of the projects. The box-plots in Figure 1b

Av
er

ag
e

SC
C

in
Lo

g
Sc

ale

Unsuccessful Successful
(a)

Av
er

ag
e

TC
C

in
Lo

g
Sc

ale

Unsuccessful Successful
(b)

Av
er

ag
e

FL
C

in
Lo

g
Sc

ale

Unsuccessful Successful
(c)

Av
er

ag
e

BC
B

in
Lo

g
Sc

ale

Unsuccessful Successful
(d)

Fig. 1. Distributions of the average scores of (a) number of source code
churns (SCC), (b) number of test code churns (TCC), (c) number of changed
files (FLC) and (d) number of built commits (BCB) according to build results
in projects.

present the distributions of computed average scores of TCC

per build for each of the projects in both successful and

unsuccessful builds. Again, from Figure 1b we see that both

the median and average of TCC over all the projects are higher

in unsuccessful builds compared to those in successful builds.

To measure the statistical significance, we conduct a MWW
test between the distributions of averages of TCC in successful
and unsuccessful builds for all the projects. The resulted P-

value (P = 3.31 × 10−7, P < α) implies that the difference

is statistically significant, however, the computed Cohen’s d
value 0.213 indicates a small effect size.

File Level Change (FLC). We calculate the number of

changed files i.e., FLC by summing up the number of files

added, deleted and modified in a push or pull request to a

development branch that initiates the build. Then, we compute

the average number of FLC per build in both successful and

unsuccessful builds for all the projects and plot those average

scores in Figure 1c. We observe from Figure 1c that both the

median and average of FLC over all the projects are higher

in unsuccessful builds compared to those in successful builds.

The computed P-value (P = 2.2× 10−16, P < α) of a MWW
test between the distributions of average scores of FLC in both

successful and unsuccessful builds for all the projects implies

the difference is significant. Moreover, the resulted value 0.36

of Cohen’s d test suggests a medium effect size.

Built Commits in a Build (BCB). To identify the impact

of number of BCB on build results, we compute the average

number of BCB in both successful and unsuccessful builds for

each of the projects. The box-plots in Figure 1d present the

computed average scores of BCB for each of the projects in

both successful and unsuccessful builds. Again, we see from

Figure 1d that both the median and average score of BCB over

all the projects are higher in unsuccessful builds compared to

those in successful builds.

The computed P-value (P = 2.2 × 10−16, P < α) of a

MWW test between the distributions of average scores of BCB

in both successful and unsuccessful builds for each of the

projects, indicates that the difference is statistically significant.

468468468468

TABLE I
BUILDS RESULTS USING DIFFERENT TYPES OF BUILD TOOLS

Build
Tool

Frequency of Builds Result Proportion of Build Result
Successful Unsuccessful Successful Unsuccessful

Plain 47,459 70,649 40.19% 59.81%

Ant 296,534 221,940 57.20% 42.80%

Maven 182,977 124,895 59.44% 40.56%

Ruby 1,857,234 748,924 71.27% 28.73%

Gradle 55,800 17,088 76.56% 23.44%

TABLE II
BUILD RESULTS IN DIFFERENT BUILD BRANCHES

Build
Branch

Frequency of Build Result Proportion of Build Result
Successful Unsuccessful Successful Unsuccessful

Master 1,806,181 838,977 68.28% 31.72%

Non-master 633,823 344,519 64.78% 35.22%

Moreover, the computed Cohen’s d value 0.61 suggests that

the effect size is large.

Based on the observations and statistical analyses, we derive

the answer to the RQ1 as follows:

Ans. to RQ1: Complexity of a task i.e., the number of built
commits, the number of source code churns and the number
of changed files in that task have a statistically significant
relationship with unsuccessful builds.

B. Analysis of Build Strategy and Contribution Model

In this study we consider a build strategy is comprised

of taking decisions about selecting two components of a

build- (1) build tools such as, Ant, Maven, Gradle, Ruby, and

Plain and (2) build branches i.e., master branch and all other

development branches termed as non-master branch. Again,

based on the ways developers commit their changes in the

development branches, we consider there are two types of

contribution models- (1) direct push and (2) pull request.
While direct push is the most prevalent contribution model,

pull-request is gaining significant popularity in open-source

projects. Here, we examine the impacts of build tools, build
branches and contribution models on build results.

Types of Build Tools (TBT). Table I presents the frequen-

cies of builds according to their results found in different

types of build tools. To gain a deeper picture, we calculate

the proportion of builds results for each build tool as shown

in the right most two columns in Table I. The tool Gradle
shows the highest proportion of successful builds followed

by the tool Ruby (i.e., rake). The tools Ant and Maven show

almost equal proportions of successful builds. While for every

tool, proportion of successful builds is higher compared to

proportion of unsuccessful builds, interestingly, exception can

be observed when Plain i.e., shell or other languages’ scripts

are used to run the builds. The same tool also shows the

highest proportion of unsuccessful builds followed by the tools

Ant and Maven. A Chi-squared test (χ2 = 93680, df = 4,

P = 2.2×10−16, P < α) also indicates statistical significance

of the relationship between uses of build tools and build results

with a medium effect size (as Cramer’s V = 0.168).

Types of Development Branches (TDB). Table II presents

the frequencies and proportions of builds according to their

build results found in both master and non-master branches

of development. We see from Table II that both the frequency

and the proportion of successful builds are higher in the master

TABLE III
BUILD RESULTS CATEGORIZED IN ACCORDANCE WITH DIFFERENT

CONTRIBUTION MODELS

Build
Model

Frequency of Build Result Proportion of Build Result
Successful Unsuccessful Successful Unsuccessful

Push 2,044,644 1,009,142 66.96% 33.04%

Pull request 395,360 174,354 69.40% 30.60%

branch compared to the non-master branch. A Chi-squared
test (χ2 = 3971.14, df = 1, P = 2.2 × 10−16, P < α)

indicates statistical significance of the relationship between

the development branches and build results, although the effect

size is weak (as Cramer’s V = 0.0331).

Types of Development Model (TDM). Table III presents

the frequencies and proportions of builds according to their

results found in both direct push and pull request models

of contribution. Although push model has higher number of

successful builds, the proportion of successful builds is higher

in pull request model. A Chi-squared test (χ2 = 1301.5, df = 1,

P = 2.2×10−16, P < α) indicates a statistical significance of

the relationship between the development models and the build

results with a weak effect size (as Cramer’s V = 0.019). Based

on the observations and the statistical analyses, we derive the

answer to the RQ2 as follows:

Ans. to RQ2: A build tool has a statistically significant
impact on the probability of the build results.

C. Analysis of Project Level Attributes

We examine whether the sizes of project level attributes

such as, the source code size in terms of lines of code (SLOC)

and the test code size per 1,000 SLOC, have any correlation

with the build results. We also check the sizes of the teams -

measured in terms of the number of contributors in that project

- to relate with the build results.

Size of Source Code (SSC). We calculate the average

number of SSC per build in successful and unsuccessful builds

for each of the projects. The distributions of those calculated

averages are presented in Figure 2a where the median and the

average score over all the projects are found almost equal in

the successful and unsuccessful builds. The computed P-value

(P = 0.881, P > α) of a MWW test between the average

scores of SSC in the successful and unsuccessful builds for all

the projects also implies that the difference is not statistically

significant.

Size of Test Code (STC). Similar to SSC, for each of the

projects we compute the average number of STC per build in

successful and unsuccessful builds. The box-plots in Figure 2b

present the distributions of computed averages of STC per

build for each of the projects in successful and unsuccessful
builds. The computed P-value (P = 0.708, P > α) of a MWW
test indicates no significant difference between averages of

STC in successful and unsuccessful builds.

Team Size of a Project (TSP). Again, for each of the

projects we compute the average number of TSP per build

in both successful and unsuccessful builds. The box-plots in

Figure 2c present the distributions of the computed averages

of TSP per build for each of the projects in successful and

unsuccessful builds. The computed P-value (P = 0.529, P >
α) of a MWW test indicates no statistical significant difference

469469469469

Av
er

ag
e

SS
C

in
Lo

g
Sc

ale

Av
er

ag
e

 S
TC

 in
 L

og
 S

ca
le

Unsuccessful Successful
(a) (b)

Av
er

ag
e T

SP
 in

 L
og

 S
ca

le

Unsuccessful Successful
(c)

Unsuccessful Successful

Fig. 2. Distributions of the averages of (a) size of source code (SSC), (b)
size of test code (STC), (c) team size (TSP) according to build results in
projects.

between averages of TSP in successful and unsuccessful builds.

Based on the analyses, we derive the answer to the RQ3 as

follows:

Ans. to RQ3: Sizes of projects and teams have no correlation
with build results.

IV. THREATS TO VALIDITY

Exclusion of 193 projects from the dataset can be ques-

tioned. One may also question the exclusion of builds with

start status. Despite of all such exclusions, our studied dataset

consists of 1,090 projects and 36.2 million builds, which are

significantly large numbers for our quantitative analysis. We

consider a single push that initiates a build represents a task,

which may not be always true as a task can be comprised of

multiple pushes.

All the studied projects are developed in either Java or Ruby,

so the generalizability of the findings can be considered as

a threat to validity of the study. The methodology of data

collection, analysis, and results are well documented in this

paper. Hence, it should be possible to reproduce the study

results.
V. RELATED WORK

Beller et al. [5] identified that testing is the single most

important reason why builds fail. While their work mainly

focused on impacts of tests on build failures, we have con-

sidered many other important factors, which have statistically

significant relationships with build results.

The work of Kerzazi et al. [8] is the most relevant to our

work where they examined the impacts of the number of code

churns, number of changed files and sizes of teams on build

results in addition to a qualitative study. While both the works

agree on the negative impacts of higher number of code churns

and changed files on builds results, contradictory results can

be observed on the relationship between teams’ sizes and

unsuccessful builds. We gain more confidence on our results

as we have conducted our study on 1,090 projects and 36.2

million builds, while the former study was based on only one

project and 3,214 builds.

Vasilescu et al. [10] identified higher number of successful
builds in pull request model than in direct push model (by

using 223 GitHub projects), although we have not found any

statistically significance difference in the number of successful
and unsuccessful builds between direct push and pull request
models using a larger dataset.

Hilton et al. [7] conducted a study to identify some costs and

benefits (e.g., productivity) of projects using CI. Vasilescu et

al. [11] also examined the productivity and quality (measured

in terms of detecting bugs early before releases) of projects

that use CI. Both the works found positive impacts of CI

on productivity, while later work claimed that the increased

productivity comes without negative effect on quality of a

product. Instead of measuring the effects of using CI, we have

examined what factors cause unsuccessful builds.

VI. CONCLUSION

In this paper, we have presented a large-scale quantitative

empirical study on the impacts of various development factors

on build results. We have studied 3.6 million builds over 1,090

open-source projects.
In our study, we have found that build results are signifi-

cantly affected by the of number of changed lines of code,

number of changed files, and number of built commits in

tasks. We have also identified correlation between build tools

and build results. However, the number of changed test code

lines, development branches and contribution models have no

significant impacts on the results of builds.
The findings from this work are validated in the light of

statistical significance. The results from this study substantially

advance our understanding of the impacts of development

factors on the build results, although contradictory results

(as discussed in Section V) indicate the need for further

investigations along those directions. In future, we also plan to

conduct more studies on the impacts of using CI in projects.

REFERENCES

[1] Cohen’s d. http://trendingsideways.com/index.php/cohens-d-formula/,
last access: Feb 2017.

[2] Cramer’s V. http://www.real-statistics.com/chi-square-and-f-
distributions/effect-size-chi-square/, last access: Feb 2017.

[3] D. Anderson, D. Sweeney, and T. Williams. Statistics for Business and
Economics. Thomson Higher Education, 10th edition, 2009.

[4] K. Beck. Extreme programming explained: embrace change. Addison-
Wesley Professional, 2000.

[5] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke the build:
An analysis of travis ci builds with github. In PeerJ Preprints, 2016.

[6] M. Beller, G. Gousios, and A. Zaidman. Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration. In
MSR, 2017.

[7] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage, costs,
and benefits of continuous integration in open-source projects. In ASE,
pages 426–436, 2016.

[8] N. Kerzazi, F. Khomh, and B. Adams. Why do automated builds break?
An empirical study. In ICSME, pages 41–50, 2014.

[9] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge.
Programmers’ build errors: A case study (at Google). In ICSE, pages
724–734, 2014.

[10] B. Vasilescu, S. Schuylenburg, J. Wulms, and M. Brand A. Serebrenik.
Continuous integration in a social-coding world: Empirical evidence
from github. In ICSME, pages 401–405, 2014.

[11] B. Vasilescu, Y. Yu, H. Wang, P Devanbu, and V. Filkov. Quality and
productivity outcomes relating to continuous integration in github. In
ESEC/FSE, pages 805–816, 2015.

[12] M. Zibran. CHI-Squared Test of Independence. https://pdfs.
semanticscholar.org/0822/f125a21cfbd05e5e980c8017499fb966568f.
pdf, last access: Feb 2017.

470470470470

