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Abstract—Code clone is an immensely studied code smell. Not
all the clones in a software system are equally harmful. Earlier
work studied various traits of clones including their stability
and relationships with program faults against non-cloned code.
This paper presents a comparative study on the characteristics
of buggy and non-buggy clones from a code quality perspective.

In the light of 29 code quality metrics, we study buggy and
non-buggy clones in 2,077 revisions of three software systems
written in Java. The findings from this work add to the
characterization of buggy clones. Such a characterization will
be useful in cost-effective clone management and clone-aware
software development.

I. INTRODUCTION

Source code reuse by copy-paste is a common practice that
software developers adopt to increase productivity. Software
systems typically have 9%-17% [48] duplicated code, and
the proportion is sometimes found to be even 50% [35] or
higher [6]. Such duplicated code, known as code clones, are
considered notorious code smell [7] due to their negative
impacts on software development and maintenance.

In the past, several studies examined the comparative sta-
bility of clones as opposed to non-cloned code [4], [8], [11],
[21], [22], [28], [33], comparative vulnerabilities in cloned
and non-cloned code [15], [16], relationships of clones with
bug-fixing changes [5], [12], [17], [18], [19], [23], [32], [41],
[45], change-proneness of clones [29], and the impacts of
clones on program’s changeability [9], [24], [25]. There have
also been studies on clone removal in program history [38],
[49], [50]. Existing literature suggest that, (i) clones are
problematic in many cases, (ii) not all clones are equally
harmful [20], and (iii) it is not practically feasible to remove
all clones from a system through aggressive refactoring [37],
[46], [47]. Therefore, for cost-effective clone management,
we must distinguish the characteristics of clones, which make
them problematic (e.g., buggy).

Not much work is done along this direction. Majority of
earlier work made comparisons between clones and non-
cloned code with respect to certain criteria (e.g., stability,
vulnerability, bug-proneness). Only a few earlier studies sug-
gested merely a handful of characteristics that might make
certain clones detrimental. Such characteristics include late-
propagation of clones [4], [5] and stability/change-proneness
of clones [33], [29].

In this paper, using 29 code quality metrics, we study the
characteristics of buggy and non-buggy clones aiming to iden-

tify certain quality metrics, which can indicate potential bug-
proneness of clones. In particular, we address the following
four research questions.

RQ1: Are buggy cloned methods more complex than non-
buggy cloned methods or vice versa? —Failure-prone soft-
ware entities are statistically correlated with code complexity
measures [30]. However, there is no single set of complexity
metrics that can indicate defect [30]. Here, we investigate 15
complexity metrics to statistically measure their dominance in
buggy and non-buggy cloned code.

RQ2: Are buggy cloned methods larger than non-buggy cloned
methods or vice-versa? — Earlier studies [39], [48] found
cloned methods to be smaller than the non-cloned methods.
However, it is unknown whether there is any substantial size
difference between buggy and non-buggy clones. Using seven
metrics, we investigate the size difference between buggy and
non-buggy cloned methods.

RQ3: Are buggy cloned methods more documented than non-
buggy cloned methods or vice-versa? — Its is suggested that
when cloning a piece of code the variations should be well
documented in order to facilitate bug fix propagation [20].
As such, undocumented or poorly documented clones can
have high possibility of causing bugs. Hence, we investigate
this possibility by analyzing five source code documentation
metrics.

RQ4: Are buggy cloned methods more coupled than non-
buggy cloned methods? — Low coupling and high cohesion
are two prominent software design qualities expected to keep
a software system’s inherent complexity manageable. In other
words, highly coupled code is harder to manage and could
be bug-prone. Thus, we investigate whether coupling metrics’
values are significantly higher in buggy cloned code compared
to non-buggy cloned code.

II. STUDY SETUP

The procedural steps of our empirical study are summarized
in Figure 1, and described in the following subsections.

A. Subject Systems

We study 2,077 revisions of three open-source software
systems written in Java. These subject systems, as listed in
Table I, are available at the GitHub repository. In Table I,
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Fig. 1. Procedural Steps of the Empirical Study

we present the total number of revisions and number of bug-
fixing revisions of each subject system along with the number
of source lines of code (LOC) in the last revision. We choose
these three subject systems as these systems have variations in
application domains, sizes, number of revisions, and are also
used in another study [34].

TABLE I
SUBJECT SYSTEMS

Subject Application LOC Total # of # of Bug-
System Domain (last rev.) Revisions Fixing Rev.
Netty Network 1,078,493 8,534 1,103
Presto SQL 2,869,799 11,909 841
Facebook-
android-SDK

Social
Networking 172,695 671 133

Total over all the systems 4,120,987 21,114 2,077

B. Clone Detection
Code clones at different levels of syntactic similarities

appear in source code. Identical pieces of source code with or
without variations in whitespaces (i.e., layout) and comments
are called Type-1 clones [37]. Type-2 clones are syntactically
identical code fragments with variations in the names of
identifiers, literals, types, layout and comments [37]. Code
fragments, which exhibit similarities as of Type-2 clones and
also allow further differences such as additions, deletions or
modifications of statements are known as Type-3 clones [37].

By definition, Type-3 clones include both Type-1 and Type-
2. In this work, we study Type-3 clones at the granularity of
method bodies. We use the NiCad [36] clone detector (version
3.5), to detect method/function clones having at least five
LOC. In detection clones, ‘blind renaming’ option of NiCad
is kept enabled and UPIT (i.e., dissimilarity threshold) is set
to 0.3. Further details on NiCad’s tuning parameters and their
influences on clone detection can be found elsewhere [36].

C. Distinguishing Buggy Clones
Consider a bug-fixing commit c resulting in the nth revision

of a system. If a particular method m is modified in the
bug-fixing commit c, then it implies that the modification is
necessary to fix the bug. Thus, the method m in the (n− 1)th

revision is considered a buggy method. In this work, we use the
bug-fixing commits identified by Ray et al. [34]. These bug-
fixing commits are distinguished through matching keywords
(e.g., bug, defect, issue) in the commit messages and are
reported to be 96% accurate [34].

For a project P , we determine the buggy cloned methods
by performing the following steps: (i) we collect all the bug-
fixing commits for P from the dataset of Ray et al. [34]. (ii)
For each bug-fixing commit c, using JGit [1], we obtain the
nth revision of P , which is the result of the commit c. (iii)
Then, we obtain the (n− 1)th revision of P . (iv) The changes
between the nth and (n−1)th revisions of P are captured using
JGit along with changed lines’ numbers in the java source
files. (v) Using NiCad [36], we detect Type-3 method clones
in the (n− 1)th revisions of P and record their locations and
boundaries (start and end line numbers in source files). (vi)
Whether a commit c affected a cloned method is determined
by checking if any of changed lines’ number identified in the
step-iv falls within the boundary of the clone. (vii) Clones that
are affected by the bug-fixing commits are identified as buggy
clones while the rest other clones are considered non-buggy.

Several other studies [13], [14], [29], [32] also adopted
similar approaches for distinguishing buggy source code.

D. Computation of Source Code Quality Metrics

We use total 29 source code quality metrics grouped into
four categories- (i) complexity metrics, which measure the
complexity of source code elements; (ii) size metrics, which
measure the basic properties of the analyzed system in terms
of different cardinalities (e.g., number of code lines). (iii) doc-
umentation metrics, which measure the amount of comments
and documentation of source code elements in the system; and
(iv) coupling metrics, which measure the interdependencies of
source code elements. All the metrics are listed and briefly
described in Table II. Detail descriptions of those metrics can
be found in the user manual of SourceMeter [2], which is
a proprietary static source code analyzer tool we use in this
work. We opt out of describing the metrics in details due to
space limitations.

Using a free version of SourceMeter [2] (version 8.2.0-
x64-linux), we compute all the metrics in Table II for each
of the buggy and non-buggy clones. The tool’s configuration
parameters are kept at their defaults.

III. ANALYSIS AND FINDINGS

We carry out our analyses in the light of each of the 29
quality metrics separately averaged for buggy and non-buggy
clones. For testing statistical significance we apply Mann-
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Fig. 2. Distribution of Complexity Metrics’ Values in Buggy and Non-buggy Cloned Code

TABLE II
SOURCE CODE QUALITY METRICS USED IN THIS STUDY

Category Metric Description
↓ HCPL Hal. Calculated Program Length
↓ HDIF Hal. Difficulty
↓ HEFF Hal. Effort
↓ HNDB Hal. Number of Delivered Bugs
↓ HPL Hal. Program Length
↓ HPV Hal. Program Vocabulary
↓ HTRP Hal. Time Required to Program

Complexity ↓ HVOL Hal. Volume
metrics ↑ MIMS Maintainability Index (MS)

↑ MI Maintainability Index (OV)
↑ MISEI Maintainability Index (SEIV)
↑ MISM Maintainability Index (SV)
↓ McCC McCabe’s Cyclomatic Complexity
↓ NL Nesting Level
↓ NLE Nesting Level Else-If
↓ LOC Lines of Code
↓ LLOC Logical Lines of Code

Size ↓ NUMPAR Number of Parameter
metrics ↓ NOS Number of Statements

↓ TLOC Total Lines of Code
↓ TLLOC Total Logical Lines of Code
↓ TNOS Total Number of Statements
↑ CD Comment Density

Documen- ↑ CLOC Comment Lines of Code
tation ↑ DLOC Documentation Lines of Code
metrics ↑ TCD Total Comment Density

↑ TCLOC Total Comment Lines of Code
Coupling ↓ NII Number of Incoming Invocations
metrics ↓ NOI Number of Outgoing Invocations
Hal.=Halstead; MS= Microsoft version; OV=Original version
SEIV=SEI version; SV=SourceMeter version.
↑ by a metric indicates the higher the better for that metric
↓ by a metric indicates the lower the better for that metric.

Whitney-Wilcoxon (MWW) test [3] with α = 0.05. To measure
effect size, we compute Cliff’s delta d [3].

Both of these non-parametric statistical tests do not require
normal distribution of data, and thus suit well for our purpose.
We consider significant difference exists between distributions
if p-value of a MWW test is found to be less than α and Cliff’s
delta d value is not negligible (i.e., |d| > 0.15). In drawing
the box-plots for our analyses, we normalize the metrics values
using the widely used Min-Max [42] method.

A. Complexity of Buggy and Non-buggy Clones

In the box plot of Figure 2, we present the distribution of
the average complexity metrics’ values for buggy (grey boxes)
and non-buggy (white boxes) clones for each studied revision
of the subject systems. The ‘x’ marks in the box plots indicate
the means over all the revisions across the subject systems.

As seen in Figure 2, for buggy clones, there are more
variations in values of all the complexity metrics compared
to those for non-buggy clones. Most importantly, considering
the averages (marked with ‘x’), all the 15 complexity metrics’
values are worse for buggy clones. Buggy clones exhibit
lower values for the four maintenance index related complexity
metrics (i.e., MI, MIMS, MISEI, and MISM). For these four
metrics higher values are desirable as indicated in Table II.
For the rest 11 complexity metrics, buggy clones are found to
have higher values while lower values are desirable for these
11 metrics. These observations indicate that buggy clones are
more complex and less maintainable compared to non-buggy
clones.

TABLE III
MWW TESTS OVER THE DISTRIBUTION OF Complexity METRICS FOR

BUGGY AND NON-BUGGY CLONES
Source
Code Metrics P -value Cliff’s delta d Significant?

HCPL 7.011× 10−12 0.2297 (small) Yes
HDIF 2.23× 10−11 0.2239 (small) Yes
HEFF 0.2787 Not applicable No
HNDB 6.017×−05 0.1307 (negligible) No
HPL 1.23× 10−06 0.1601 (small) Yes
HPV 9.75× 10−14 0.2499 (small) Yes
HTRP 0.5575 Not applicable No
HVOL 2.75× 10−05 0.1371 (negligible) No
MI 2.20× 10−16 −0.2882 (small) Yes
MIMS 2.20× 10−16 −0.2882 (small) Yes
MISEI 1.48× 10−14 −0.2614 (small) Yes
MISM 1.48× 10−14 −0.2614 (small) Yes
McCC 0.1872 Not applicable No
NL 4.17× 10−07 0.1675 (small) Yes
NLE 1.65× 10−10 0.2136 (small) Yes
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To determine whether our observations are statistically sig-
nificant, for each of the 15 complexity metrics, we separately
conduct a one-sided pair-wise MWW test between the metric’s
values computed for buggy and non-buggy clones. The p-
values obtained from these tests are presented in Table III.
The measurements of effect sizes (i.e., Cliff’s delta d) corre-
sponding to the MWW tests are also included in Table III.

As seen in Table III, the p-values obtained from MWW
tests are less than α for all the complexity metrics except for
three (HEFF, HTRP, and McCC). However, for two (HNDB
and HVOL) of these 12 complexity metrics, the effect sizes
computed in Cliff’s delta d are found to be negligible. For
rest of the 10 complexity metrics, the MWW tests indicate
statistical significance in the differences of the metrics’ values
for buggy and non-buggy clones while the Cliff’s delta d
values also suggest that the effect sizes are not negligible.

Hence, from our observations and statistical tests, we now
derive the answer to RQ1 as follows:

Ans. to RQ1: Buggy clones have significantly higher com-
plexity and lower maintainability compared to non-buggy
code clones.
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Fig. 3. Size Metrics’ Values in Buggy and Non-buggy Clones

B. Size Difference of Buggy and Non-buggy Clones
In Figure 3, we plot the distribution of the seven size

metrics’ values computed for buggy and non-buggy clones.
Similar to the case of complexity metrics (discussed in Sec-
tion III-A), we see that the variations in all the size metrics is
higher in buggy clones than in non-buggy ones.

TABLE IV
MWW TESTS OVER AVERAGE VALUES OF Size METRICS IN BUGGY AND

NON-BUGGY CLONED CODE
Source
Code Metrics P -Value Cliff’s delta d Significant?

LLOC 1.34× 10−10 0.2147 (small) Yes
LOC 1.47× 10−11 0.2260 (small) Yes
NOS 5.48× 10−06 0.1500 (small) Yes
NUMPAR 3.44× 10−06 −0.1529 (small) Yes
TLLOC 8.88× 10−11 0.2169 (small) Yes
TLOC 1.12× 10−11 0.2275 (small) Yes
TNOS 1.94× 10−06 0.1570 (small) Yes

Average values of all the size metrics are higher (i.e., worse)
for buggy method clones except for NUMPAR (i.e., number of

parameters). Surprisingly, the average value of this particular
metric appear to be slightly higher for non-buggy clones.
Again, to verify the significance of our observations and effect
size, we conduct one-sided pair-wise MWW test and Cliff’s
delta d for each of the seven size metrics between their values
computed for buggy and non-buggy clones. The results of the
tests are presented in Table IV. The results in Table IV suggest
statistical significance (with non-negligible effect size) in the
differences of all the seven size metrics’ values computed for
buggy and non-buggy clones. Based on the findings, we now
answer the RQ2 as follows:

Ans. to RQ2: Compared to non-buggy clones, the buggy
method clones have significantly higher code size measured
in terms of the number of lines and statements. Surprisingly,
non-buggy cloned methods are found to have higher number
of parameters.
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Fig. 4. Documentation Metrics’ Values in Buggy and Non-buggy Clones

C. Documentation in Buggy and Non-buggy Clones

Figure 4 depicts the distribution of average values of the
five documentation metrics for buggy and non-buggy clones.
As seen in the figure, the medians of all the documentation
metrics’ values are consistently higher (better) for non-buggy
clones. On the contrary, for non-buggy clones, the mean
values are lower (worse) for all the metrics except for DLOC
(Documentation Lines of Code).

TABLE V
MWW TESTS OVER AVERAGE VALUES OF Documentation METRICS IN

BUGGY AND NON-BUGGY CLONED CODE
Source
Code Metrics P -Value Cliff’s delta d Significant?

CD 2.20× 10−16 −0.2809 (small) Yes
CLOC 3.68× 10−16 −0.277 (small) Yes
DLOC 2.20× 10−16 −0.7243 (large) Yes
TCD 9.58× 10−16 −0.2730 (small) Yes
TCLOC 3.12× 10−15 −0.2680 (small) Yes

Now, for the distributions of each of the five documenta-
tion metrics computed for buggy and non-buggy clones, we
separately conduct a one-sided pair-wise MWW test and also
measure effect size using Cliff’s delta d to test our hypothesis
that buggy clones have inferior documentation (i.e., lower
documentation metrics value) than the non-buggy clones. The
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obtained p-values and Cliff’s delta d values are presented in
Table V. As we see in Table V, for all the five documentation
metrics, the p-values indicate statistical significance and Cliff’s
delta d values suggest non-negligible effect sizes. Thus the
statistical tests fail to reject our hypotheses for each of the
documentation metrics. We, therefore, answer the research
question RQ3 as follows:

Ans. to RQ3: The quality of documentation in buggy clones
is significantly inferior to that in non-buggy clones.
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Fig. 5. Coupling Metrics’ Values in Buggy and Non-buggy Clones

D. Coupling in Buggy and Non-buggy Clones

In Figure 5, we plot the distribution of average values of
the two coupling metrics for buggy and non-buggy clones.
As we see in Figure 5, for both the coupling metrics, the
variations in buggy clones are higher compared to non-buggy
clones. Again, for both the metrics, averages are higher for
buggy clones, and the difference is more substantial for the
NOI (Number of Outgoing Invocations) metric. The median
for NOI is higher for buggy clones while for the NII (Number
of Incoming Invocations) metric the medians are nearly equal
for both buggy and non-buggy clones.

TABLE VI
MWW TESTS OVER AVERAGE VALUES OF Coupling METRICS IN BUGGY

AND NON-BUGGY METHOD CLONES
Source
Code Metrics P -Value Cliff’s delta d Significant?

NII 0.006414 −0.0926 (negligible) No
NOI 2.20× 10−16 0.2972 (small) Yes

Similar to previous analyses, we conduct one-sided pair-
wise MWW test and compute Cliff’s delta d separately for
each of the coupling metrics to test the hypothesis that buggy
clones are highly coupled (i.e., have higher coupling metrics’
values) than the non-buggy clones. The results of the tests
are presented in Table VI. As seen in the table, the p-
values of MWW tests for both the metrics indicate statistical
significance with p < α. However, the Cliff’s delta d values
indicate non-negligible effect size for NOI, but negligible
effect size for the NII metric.

In combination of the two metrics, we can say that buggy
method clones are comparatively more coupled than non-

buggy clones. Hence, we derive the answer to the research
question RQ4 as follows:

Ans. to RQ4: Buggy method clones have significantly
higher number of outgoing dependencies (i.e., outgoing
invocations) compared to non-buggy method clones. How-
ever, there is no significant differences in the incoming
dependencies (i.e., incoming invocations) of buggy and non-
buggy cloned methods. Overall, buggy clones are more
coupled than non-buggy clones.

IV. THREATS TO VALIDITY

Construct Validity: We use the bug-fixing commits that are
identified by Ray et al. [34]. These bug-fixing commits are dis-
tinguished based on matching of keywords (e.g., bug-fix, bug,
issue, bug id) in the commit messages. There is a possibility
that some portions of the bug-fixing commits could be regular
commits (e.g., relevant to new feature implementations and
improvements) and might not be genuinely relevant to bug-
fix. However, this dataset of bug-fixing commits is reported
to be 96% accurate [34]. In the identification of bug-fixing
changes affected by a bug-fixing commit, there is a possibility
that not all the affected lines of code are indeed responsible
for the bug fixed in the bug-fixing commit. However, for this
purpose, this is an acceptable approach also widely adopted
in other studies [13], [14], [29], [32].

When a cloned method m is affected by bug-fixing changes
in revision n, the method m is considered buggy at revisions
n − 1. For rest of the revisions the method m is considered
non-buggy. The content of the method m can safely considered
non-buggy in any later revision ρ with ρ > n since the bug is
fixed in revision n. However, prior to the bug-fixing revision
n, the method m may or may not be buggy, but in our work,
we considered it non-buggy. This assumption can be argued
as a threat to the construct validity of this work.
Internal Validity: In the detection of clones, we have used
the NiCad clone detector, which is reported to be highly
accurate [36], [43] and is widely used in many studies [13],
[33], [48], [47]. The library JGit used in our work for
locating changes between two revisions is also reliably used
for similar purposes in other studies [10], [31]. Moreover, we
manually verified the correctness of the computations probing
with random samples. Thus, we develop high confidence in
the internal validity of this study.
External Validity: Although our study includes a large num-
ber of revisions of three subject systems, all the systems are
open-source and written in Java. Thus the findings from this
work may not be generalizable for industrial systems and
source code written in languages other than Java.
Reliability: The methodology of this study including the
procedure for data collection and analysis is documented
in this paper. The subject systems being open-source, are
freely accessible while the tool NiCad and library JGit
are available online. All the bug-fixing commits are also
available [34]. Therefore, it should be possible to replicate
this study.
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V. RELATED WORK

Several attempts are made to explore fault-proneness of
clones by relating them with bug-fixing changes obtained from
commit history. Very recently, Mondal et al. [29] claimed that
code clones, which were recently changed or created had high
possibilities of containing bugs. Again, Rahman and Roy [33]
found that stability and bug-proneness of code clones are
related. The studies of Mondal et al. and Rahman and Roy
only focused on recency of code changes and stability of
cloned code respectively. On the other hand, our work, for
the first time has investigated a comprehensive set of source
code metrics to identify their relationships with bug-proneness
of cloned code.

Selim et al. [41] investigated bug-proneness of code clones
by combining source code and clone related metrics. However,
they used only four source code metrics (e.g., Lines of Code,
number of tokens, Nesting levels and Cyclomatic Complexity).
Moreover, their investigation was based only on Type-1 and
Type-2 method clones, thus missed out Type-3 clones. In
contrast to their work, we have used Type-3 clones for this
study that also includes Type-1 and Type-2 clones. Moreover,
we have used 29 source code metrics to conduct the analyses
in this study.

Wang et al. [44] related eight source code metrics with
harmfulness of cloned code. They defined harmfulness of a
piece of clone code based on maintenance cost. The higher
the maintenance cost, the higher the clone code is harmful. In
contrast, we have studied real buggy clones identified thorough
bug-fixing changes and examined them using 29 software
metrics.

Juergens et al. [18] studied inconsistent clones to relate
with bugs. They used manual investigation to identify bugs in
inconsistent clones, and concluded that unintentionally made
inconsistent clones are more likely to contain defects. They
hadn’t conducted any statistical tests of significance of their
finding. In contrast to their approach, we have mined source
code repositories to identify bugs and conducted statistical
tests of significance for all of our findings.

Rahman et al. [32] compared bug-proneness of clone and
non-clone code and found non-clone code to be more bug-
prone than clone code. However, their investigation was based
on monthly snapshots of their subject systems, and thus, they
had the possibility of missing buggy commits. In our study,
we consider all the bug-fix revisions for each of the subject
systems, thus, we have included all bug-fix commits.

Barbour et al. [5] suggested that late propagations due to
inconsistent changes are prone to introduce software defects.
While Lozano and Wermelinger [24] suggested that having
a clone may increase the maintenance effort for changing a
method, Hotta et al. [11] reported code clones not to have any
negative impact on software changeability. Lozano et al. [25]
reported that a vast majority of methods experience larger and
frequent changes when they contain cloned code. Mondal et
al. [28] also reported code clones to be less stable. However,
opposite results are found from several other studies [4], [9],
[8], [21].

Recently, Islam et al. [16] conducted a comparative study of
security vulnerabilities in cloned and non-cloned code. Earlier
Islam and Zibran [15] and Sajnani et al. [40] conducted two
comparative studies of code smells in cloned and non-cloned
code. However, they defined code smells as vulnerability
and bug patterns in their respective studies. By targeting
code stability and dispersion of code changes Mondal et al.
also performed comparative studies in cloned and non-cloned
code [26], [27].

Along the comparative studies, Saini et al. [39] conducted
a study to compare source code quality metrics for cloned and
non-cloned code. The study used 27 software quality metrics,
categorized in three groups e.g., complexity, modularity, and
documentation (code-comments). They did not find any sta-
tistically significant difference between the quality of cloned
and non cloned methods for most of the metrics. However, we
have compared the significance of differences of 29 software
quality metrics’ (categorized in four groups) values in buggy
and non-buggy cloned methods instead of comparing them in
cloned and non-cloned code.

In another study, Islam et al. [14] found the percentage of
changed files due to bug-fix commits is significantly higher in
clone code compared with non-clone code. They also found
the possibility of severe bugs occurring is higher in clone
code than in non-clone code. While all these above studies
provide valuable insights about the characteristics of code
clones, the clone literature lacked the comparative study of
buggy and non-buggy cloned code characteristics in terms of
source code quality metrics. This study has filled that gap in
some extent and identify which source code quality metrics
have contributed to buggy cloned code.

VI. CONCLUSION

In this paper, we have presented a comparative study of
buggy and non-buggy Type-3 method clones in terms of 29
code quality metrics grouped into complexity metrics, size
metrics, documentation metrics, and coupling metrics. Our
quantitative study is based on 2,077 bug-fixing revisions of
three open-source software systems written in Java.

In our study, we have found that buggy clones have higher
complexity and lower maintainability compared to non-buggy
cloned methods. Moreover, buggy clones are found to be larger
in size measured in terms of the number statements and lines of
code. Surprisingly, we have found that the non-buggy method
clones have higher number of parameters while too many
parameters in functions are generally considered problematic
and recognized as a code smell [7].

As expected, compared to non-buggy clones, documentation
quality of buggy clones are found inferior. Overall, buggy
clones are found to be more coupled than non-buggy clones.
However, it is interesting to have found that the buggy cloned
methods have significantly higher outgoing dependencies (i.e.,
outgoing invocations) compared to non-buggy clones. In case
of incoming dependencies, no significant difference is found
between buggy and non-buggy clones.
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The results are validated with statistical tests of significance.
However, there is a need for qualitative analyses to draw
further insights into the reasons of our findings, especially
for case of higher method parameters in non-buggy method
clones and the for the case of higher outgoing dependencies
in buggy clones. We plan to extend this work with qualitative
analyses along with higher number of subject systems and
their revisions.

The findings from this study advance our understanding
of the characteristics and impacts of buggy clones on code
quality. It appears that some of the code quality metrics can
be good indicators for potentially buggy clones, and thus
can be applied for identifying problematic clones for removal
by refactoring or other especial treatments. For doing such,
we need to derive a thresholding mechanism, which would
indicate at what values of the quality metrics certain clones
would be reported as potentially harmful. These remain within
our plans for expanding this work.
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