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ABSTRACT

A deep understanding of the common patterns of bug-fixing changes
is useful in several ways: (a) such knowledge can help developers
in proactively avoiding coding patterns that lead to bugs and (b)
bug-fixing patterns can be exploited in devising techniques for
automatic program repair.

This work includes an in-depth quantitative and qualitative anal-
ysis over 4,653 buggy revisions of five software systems. Our study
identifies 38 bug-fixing edit patterns and exposes 37 new patterns of
nested code structures, which frequently host the bug-fixing edits.
While some of the edit patterns were reported in earlier studies,
these nesting patterns are new and were never targeted before.
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1 INTRODUCTION

Bug-fixing efforts consume a vast amount of total expenses in
software maintenance [6] while nearly 80% of software cost is spent
in maintenance [15]. Typical bug-fixing efforts mainly involve two
types of tasks: (a) localization of bugs in source code, and (b) bug-
fixing edits to source code. A deep understanding of the common
bug-fixing patterns can immensely help in minimizing efforts in
both of these tasks and also contribute to devising techniques for
automated program repair (APR). A good understanding of the bug
patterns can also help a developer to proactively avoid writing code
that leads to program faults.

Bug-fixing efforts require a good understanding of the source
code, intended edits, and their potential impacts. Studies [22, 23]
find that code changes are repetitive in nature within and across
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code bases. Hence, mining code changes has become an effective
way for program comprehension and deriving patterns of diverse
categories including bug-fix patterns.

Early efforts in discovering bug-fix patterns highly depended on
manual efforts [22, 33] in the analysis of textual differences among
different program entities. However, manual effort is criticized for
being error-prone, tedious, incomplete, and imprecise [8, 14]. Re-
cent efforts made use of Abstract Syntax Tree (AST) based code
differencing tools (e.g., ChangeDistiller [9], Diff/TS [13] and
GumTree [8]) for automatic discovery of code-changes and differ-
encing program entities. Previous work on discovering bug-fix
patterns remained focused on bug-fixing edit patterns, which in-
clude bug-fixing changes to source code at a very fine-grained level
without capturing those changes’ surrounding code contexts, such
as nested code structures (see examples in Section 2.3). A nested code
structure is a hierarchy of AST nodes that indicates the location of
a bug-fix change in an AST nodes’ hierarchy. Nested code struc-
tures provide an important code context/aspect of bug-fix changes
but remained absent in the studies [8, 21, 25, 26, 33, 37, 41] that
identified bug-fixing edit patterns.

In this work, we capture both bug-fixing edit patterns and nest-
ing patterns (i.e., frequent nested code structures) of bug-fixing
edits through an in-depth (quantitative and qualitative) analysis of
4,653 buggy revisions of five software systems drawn from diverse
application domains. We organize this paper around two research
questions as follows:

RQ1: What are the common patterns of bug-fixing edits? — Here,
we explore bug-fixing editings/changes made in source code and
identify the bug-fixing edit patterns. We will verify what portion
of the identified bug-fixing edit patterns are new, and how many of
them were previously reported in earlier studies [26, 33, 37].

RQ2: What are the prominent nested code structures that frequently
host bug-fixing edits? —

Here, we investigate the frequent nested code structures, i.e., nest-
ing patterns where the bug-fixing edits are located. These nesting
patterns will complement the edit patterns in our understanding of
bug-fixing patterns with information about the locations and con-
texts of individual edits within surrounded nested code structures.
Such nested code structure contexts provide opportunities to use
that along with other code contexts, such as textual similarity of
code [36] to locate program faults, and repair those automatically.

Contributions: Towards a deeper understanding of bug-fix pat-
terns, this paper makes two major contributions:

e We identify a total of 38 bug-fix patterns organized in 14
categories. This is the highest number of bug-fix patterns
identified in a single study. Four of these patterns are com-
pletely new, and 34 of them confirm those reported in earlier
studies.


https://doi.org/10.1145/3341105.3373880
https://doi.org/10.1145/3341105.3373880
https://doi.org/10.1145/3341105.3373880

Obtain (n-1)"
(buggy)
revision

(n-1)th
Revision

C

Git Repository of
a System P1

Bug-Fixing
Commits for the
System P1

Bug-fixing

N Obtain nf
commit ¢

(bug-Fixing)
revision

3 Identify bug- Bug-fixing edit
Identify AST AST changes fixing edit patterns
differences between versions patterns
/
/
/
/
/
/ Nestil tt
/ N . esting patterns
AST chang(_es ——= Identify nested of bug-fixing edits
between versions ? code structures
/
o
s - ~.
AN

7
7 ! *This step is further elaborated in Figure 10 }

Figure 1: Procedural steps to identify edit patterns and nesting patterns of bug-fixing changes

o We study locations of bug-fix changes in nested code struc-
tures and identify 37 nesting patterns that hold the majority
of the bug-fix edits. These nesting patterns are new (ie.,
never targeted before), and add a new dimension in our un-
derstanding of bug-fix patterns.

2 METHODOLOGY

The procedural steps of our empirical study are summarized in
Figure 1. For each subject system, we collect the bug-fixing revi-
sions. Then, for each bug-fixing revision, using AST based code
differencing tools, we detect differences between the bug-fixing
revision and its immediate previous revision. Collections of such
AST differences are then analyzed to detect bug-fixing edit patterns
and dominant nested code structures of code changes to fix bugs.
In the following, we describe the subject systems and elaborate
procedural steps with necessary discussions.

2.1 Subject Systems

We study 4,653 revisions of five open-source software systems
written in Java. These subject systems, as listed in Table 1, are
available in GitHub. In Table 1, we present the total number of
revisions and the number of source lines of code (KLOC) in the
last revision for each subject system. We select these five subject
systems as these systems have variations in application domains,
sizes, number of revisions, and are also used in other studies [17, 35].

Table 1: Subject Systems

Subject Application KLOC | Total # of # of Bug-
System Domain (last rev.) | Revisions | Fixing Rev.
Netty Network 1,078 8,534 1,103
Presto SQL 2,869 11,909 841
Facebook-android-SDK | Social Networking 172 671 133
Accumulo Distributed Key-value 458 9,734 1941
store
Common-maths Math library 187 6,971 635
[ Total over all the systems [ 4764 | 37,819 4,653 |

Moreover, the selected five subject systems can be classified in
two sets: (i) the first three subject systems, which were never been
used earlier to detect bug-fixing edit patterns, belong to the first set
and (ii) the second set consists of the remaining two subject systems,
which were earlier used in other studies [36]. Such a combination
of selected subject systems provides the opportunity not only to
verify existence of earlier detected bug-fixing edit patterns but also
to identify new bug-fixing edit patterns if they exist in our dataset.
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2.2 Collecting Bug-fixing Commits

For the first three systems, we collect the bug-fixing commits iden-
tified by Ray et al. [35]. These bug-fixing commits are distinguished
through matching keywords (e.g., bug, defect, issue) in the commit
messages and are reported to be 96% accurate [35]. To identify the
bug-fixing commits in the remaining last two systems, we use the
same keywords used by Ray et al. [35]. The number of bug-fixing
revisions for each system is listed in the last column of Table 1.

2.3 Generating AST-differences

Consider a bug-fixing commit C resulting in the n'® revision of
a system/project P1. If a particular line of code L is modified in
the bug-fixing commit C, then it implies that the modification is
necessary to fix the bug. Thus, the line of code £ in the (n — nth
revision is considered as a buggy line. In other words, we consider
the changes between the n'h and (n— 1) revisions of P; are buggy.
Several other studies [16, 29, 34] also adopted the similar approach
for distinguishing buggy source code.

At this level, as shown in Figure 1, we obtain the nth and (n—
1™ revisions of P using JGit [4]. Then, we capture bug-fixing
changes at the AST [8] level between those two revisions using
GumtreeSpoon and Gumtree separately (see action 03 and 04 in Fig-
ure 1). Captured AST differences using GumtreeSpoon and Gumtree
are further processed to determine bug-fixing edit patterns and nest-
ing patterns, respectively (see action 05 and 06 in Figure 1).

Before describing how we identify bug-fixing edit patterns (in
Section 3) and nesting patterns (in Section 4), in the following, we
discuss and compare the outputs of GumTree and GumtreeSpoon to
develop the background/context that helps in understanding the
rest of the content of the paper.

Understanding of GumTree’s output. For each action/change
in a node, GumTree generates four major attributes: (i) action name
(e.g., ins, del, upd or, mov) (ii) label- that indicates text/name of the
changed node (iii) type of the changed node (e.g., changed node can
be a simple variable name or an expression) and (iv) nested code
structure (NCS)- the tree/hierarchy of parent nodes of the changed
node, which indicates the location of the changed node in an AST.
We use these four attributes: (action name, node type, label, NCS) to
represent a changed AST node.

Let’s assume, there is a bug in a piece of code presented at the left
side of the arrow sign in Figure 2(a). The bug resides in line number



Buggy code Bug-fixed code

1 public class Calculator{ 1 public class Calculator{

2 public int getSumOfEvenNums(Int[ ] nums){ 2 public int getSumOfEvenNums(Int[ ] nums){
3 int sum=0; 3 int sum=0;

4 for(int i=0;i<nums.length;i++){ 4 for(int i=0; i<nums.length; i++){

5 if(numsli]%3==0){ // buggy line 5 if(numsli]%2==0){ //bug-fixing change
6 sum=sum-+numsii]; —p(6 sum=sum-+numsi];

7 } 7 }

8 } 8

9 return sum; 9 return sum;

10 } 10 }

11} 11}

. . 3
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Figure 2: (a) Changing a literal in an if statement to fix a bug and
the presentations of the bug-fixing change using (b) GumTree and (c)
GumtreeSpoon

public class Math{
public void sum(int a, int b){
if(al=b){
intc = a+b;

public class Math{
public void sum(int a, int b){
intc =a+b;

@
(Insert, If, Statement, if (@a!=b) {; },
CtBlocklmpl— CtMethodIimpl— CtClassimpl— CtModellmpI$CtR
ootPackage)

(b)
Figure 3: (a) Adding an if statement as a precondition to fix a bug
and (b) corresponding representation of the bug-fixing change us-
ing GumtreeSpoon

five where a developer uses 1iteral ‘3’ instead of literal ‘2”. The
buggy code is fixed in the bug-fix revision, which is presented at the
right side of the arrow sign in Figure 2(a). If those two revisions are
given to GumTree, it will generate differences between the provided
revisions, which can be presented using a tuple of four attributes
as shown in Figure 2(b).

From Figure 2(b), it is easily understood that a NumberLiteral
is updated to fix the bug. From the NCS (the last attribute) of
the updated node, we see the NumberLiteral is a part of two
infix_expressions (i.e.,, == and %), which reside in an if state-
ment. Again, the if statement resides in a block under a for state-
ment. The for statement is a part of a block inside a method. The
method resides inside a type declaration (i.e., a class) and compila-
tion unit is always the root of an NCS. Here, it is noticeable that an
NCS represents a sequence, where the root and all internal nodes
have only one child except the leaf node, which has no child.

Understanding of GumtreeSpoon’s output. While the outputs
of GumtreeSpoon are almost similar to the outputs of GumTree in
terms of presentation, there are some fundamental differences exist
between their outputs. First, GumtreeSpoon provides a changed
node’s role in its immediate parent or node (i.e., role in parent),
which helps in understanding code changes’ patterns. For exam-
ple, GumtreeSpoon indicates that the changed literal’s role in
its parent is rightOperand. How the attribute role in parent helps
in determining bug-fixing edit patterns is elaborately described in
Algorithm 1 presented latter in this paper.

Second, GumtreeSpoon provides modified source code as opposed
to the label provided by GumTree. We find modified source code is
more helpful to understand bug-fixing edit patterns (see Section 3.2)
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public class Math{
public void sum(float a, int b){
float ¢ = a+b;
} }
} }

(a)
(Update, TypeReference, float to int, type,

CtParameterlmpl— CtMethodlimpl— CtClassimpl— GtModellmpl$CtRootP
ackage)

public class Math{
public void sum(int a, int b){
float c = a+b;

(b)
Figure 4: (a) Updating parameter type (float to int) of a method
to fix a bug and (b) corresponding representation of the bug-fixing
change using GumtreeSpoon

instead of a label. Thus, we use a tuple of five attributes such as (ac-
tion name, node type, role in parent, modified source code, nested code
structure) to represent a code change using GumtreeSpoon’s output
as shown in Figure 2(c). It is noticeable in Figure 2(b) and 2(c) that
naming conventions of the nodes are different between GumTree
and GumtreeSpoon.

Finally, while GumTree provides fine-grained level differences,
GumtreeSpoon generates summary/concise level outputs of code
changes that help in understanding bug-fixing edit patterns con-
veniently. For example, the code changes shown in Figure 3(a), is
represented using GumtreeSpoon’s output in Figure 3(b). From Fig-
ure 3(b), we see that only node if is inserted, thus GumtreeSpoon ig-
nores other fine-grained level changes (e.g., conditional operator
and variables (i.e., a and b) additions). In contrast to that, GumTree’s
outputs indicate that five nodes are inserted: insert block, insert if-
Statement, insert infixExpression (i.e., ==), and insert simpleNames
(i.e., variables a and b).

Reason to use two different tools to answer RQs. While the
detailed, in-depth, and verbose outputs provided by GumTree are
suitable to analyze nesting patterns in deeper levels to answer RQ2,
the concised outputs of GumTreeSpoon are required for analyzing
bug-fixing edit patterns to answer RQ1.

3 CAPTURING BUG-FIXING EDIT PATTERNS

Once we have the GumtreeSpoon’s outputs for the bug-fixing changes,
we aim to identify the bug-fixing edit patterns defined by Pan et
al. [33]. Pan et al. have defined a set of 27 bug-fixing edit patterns
divided in nine categories: If-related (IF), Method Calls (MC), Se-
quence (SQ), Loop (LP), Assignment (AS), Switch (SW), Try (TY),
Method Declaration (MD) and Class Field (CF). Their study has
identified the highest number of bug-fixing edit patterns in a single
study. Moreover, according to the number of citations, this is one of
the most important papers on bug-fix edit patterns, thus it becomes
a benchmark for the studies related to bug-fixing edit patterns’ de-
tection. In the rest of this paper, we use the term PanPattern to refer
to a pattern identified by Pan et al. [33]. We also verify whether
GumtreeSpoon is able to identify any new bug-fixing edit patterns
as opposed to the PanPatterns in our dataset.

3.1 Making Sense of GumtreeSpoon’s Output

Here, we manipulate the GumtreeSpoon’s outputs using Algorithm 1
to make those more obvious for our analysis. Based on a preliminary
investigation, we find that a code change belongs to or impacts the
node that is an immediate previous node of the first occurrence of
a block node in an NCS. For example, from the bug-fixing change



presented in Figure 2(a), it is not obvious that the change occurs in
an if statement until we see the immediate previous node of the
first block node (which is indeed an if node) in the NCS given in
Figure 2(c) generated by GumtreeSpoon.

When an NCS contains at least one block node, we determine
the pattern of a bug-fixing change using the procedure described
in Algorithm 1, Lines 2-8. An NCS starts with a block node if an
insertion or deletion or update is performed on a node, which is not
contained in or associated or linked with any other node within
its block. As shown in Figure 3(b), a node If is inserted and the
NCS starts with a block node. The pattern for this type of bug-fix
changes is determined using the action (i.e., ins/del/upd) performed
on a node to change code, and the name of the changed node as
shown in Algorithm 1, Lines 3-4.

Another category of bug-fix changes contains those type of pat-
terns where the implementation of a node is updated by performing
an action on any other nodes, which are contained in or associated
or linked with the implementing node within its block. As shown in
Figure 2(a), a literal node, which is contained in an implementing
if node, is updated where both the nodes (i.e., if and literal)
reside in the same block. In this case, the bug-fixing edit pattern is
determined using action, changed node name, and the immediate
previous node’s name of the first occurrence of a block node in an
NCS (see Algorithm 1, Lines 6-7).

The third category of bug-fix edit patterns does not have any
block node in the NCSes for changes in the definitions of class
or interface members such as addition/removal of class fields or
methods or changes in the types of parameters of methods. As
shown in Figure 4(a), a developer updates type of a parameter from
float to int to fix a bug. Figure 4(b) represents the change using
the output of GumtreeSpoon where the NCS does not have any
block node. For this case, we identify a bug-fixing edit pattern
by incorporating a changed node’s role in parent attribute, and
consider the first node in the NCS as the location of the change.

If a class member (e.g., method, variable) or a parameter of a
method is changed, we use action, node name, and the first node
in the NCS to determine the pattern of the bug-fix change (see
Algorithm 1, Lines 10-14). If the type a class variable or method’s
parameter is changed, then we determine the location of the change
(e.g., type of a class variable or method’s parameter) (see Algo-
rithm 1, Line 16), and use that along with action and node name to
determine the bug-fix pattern (see Algorithm 1, Line 17).

For the bug-fixing changes presented in Figure 2(a), Figure 3(a),
and Figure 4(a), Algorithm 1 will output the patterns update literal
of CtIflmpl, insert if, and update type of a parameter of a method,
respectively. The patterns that we identify using Algorithm 1 are
termed as GSPatterns in the rest of this paper.

3.2 Mapping GSPatterns to PanPatterns

A GSPattern can be mapped directly to its corresponding PanPat-
tern. For example, the GSPattern update literal of CtIfImp indicates
its corresponding PanPattern change of if condition expression
(IF-CC) [33]. However, we have to leverage the attribute modified
source code to identify PanPatterns from their corresponding GSPat-
terns in two cases that include: (i) addition of a precondition (i.e.,
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if node) check with/without jump statement (e.g., return, and
break) and (ii) changes in a method call.

An inserted if statement acts as a precondition if it wraps up
existing code, otherwise, that will be considered as a new insertion
of an if node. For any inserted if node if we find modified source
code contains any lone semicolon (;) in a line, then the inserted if
statement/node is considered as a precondition. For example, the
modified source code, presented in Figure 3(b), contains a lone semi-
colon in the bug-fixing change presented in Figure 3(a). The number
of such lone semicolons indicates the number of lines wrapped up
by a precondition. In addition to semicolon, we also check whether
modified source code contains any jump statement such as return,
continue, or break to identify if any precondition is added with a
jump that corresponds to another PanPattern addition of a precondi-
tion check with a jump (IF-APCJ). We use the same logic to identify
if a piece of code is wrapped up by statements such as try-catch,
loop, or switch-case. We hypothesize an inserted if is added as
postcondition if that is not a precondition.

Algorithm 1: Detection of GSPatterns

Input:T : a tuple of five attributes generated by GumtreeSpoon for a code
change

String pattern;

if TNCS.contains(“Block") then

if TNCS.startsWith(“Block") then

| patterneTaction+* "+ T.nodeName;

else
String IPN«—getPreviousNodeOfFirstBlock(T.NCS);
patterne—T.action +“ " + TnodeName + “ of "+ IPN;

end

[ R R Y N ORI

else
10 String FNN«—getFirstNodeInNCS(T.NCS);
if TroleInParent.equals(“typeMember”) then
12 ‘ pattern—T.action +“ "+ T.nodeName+“ in " + FNN;
13 else if TroleInParent.equals(“parameter”) then
14 | patterneTaction +* "+ T.nodeName+* in " + FNN;
else if TrolelnParent.equals(“type”) then

String CFL«—getChangeLocation(T.NCS);

patterne—T.action +“ "+ T.nodeName +“ in " + CFL;

16
17

end

19 return pattern;

o

In the second case, we parse modified source code to extract
the method call statements in a buggy revision and its non-buggy
revision. Then, for each method call, we extract the method name,
arguments, and class name of a method call if available. Then, we
compare that extracted information between the buggy and non-
buggy method call statements to identify the location where a
change occurs to map the change to its corresponding PanPattern.
Multiple changes may occur in a method call (e.g., the return type
can be changed and an argument can be inserted) to fix a buggy
method call. In such cases, we record all types of changes and use
those to identify bug-fixing edit patterns.

3.3 Dominant Bug-fixing Edit Patterns

3.3.1 Detected PanPatterns. By processing GumtreeSpoon’s out-
puts we are able to detect 21 types of PanPatterns distributed in
seven categories presented in Table 2. The abbreviations/initials of
the categories and patterns’ names are given in the same table. The
MD category contains the highest number of bug-fixing changes
(33.00%), followed by the IF (20.78%), MC (20.00%), and CF (16.00%)
categories. Noticeable, the first four categories consist of almost



Table 2: Distributions of identified PanPatterns

[ Category | Pattern Name [ # (%) [ Total (%) |
Method Change of method declaration (MD-CHG) 4,116 (17.54%)
Declaration| Addition of a method declaration (MD-ADD) 1,916 (8.17%) | 7,687 (33%)

(MD) Removal of a method declaration (MD-RMV) 1,655 (7.05%)

Addition of post-condition check (IF-APTC) 1,975 (8.42%)

Removal of an if predicate (IF-RMV) 1,588 (6.77%)

Change of if condition expression (IF-CC) 761(3.24%)
If-related Addition of precondition check (IF-APC) 309 (1.32%) | 4,877 (21%)
(IF) Addition of precondition check with jump (IF- 37 (0.16%)

APC))

Removal of an else branch (IF-RBR) 71 (0.30%)

Addition of an else branch (IF-ABR) 136 (0.58%)

2,402 (10.24%)

Method call with different number of parame-
ters or different types of parameters (MC-DNP)
Method Change of method call to a class instance (MC-
Call (MC) | DM)

Method call with different actual parameter val-
ues (MC-DAP)

Addition of a class field (CF-ADD)
Change of class field declaration (CE-CHG)

4,639 (20%)

1,582 (6.74%)

655 (2.79%)

1,355 (5.77%)
1,719 (7.33%)

Class Field. 3,735 (16%)

Overall total 23,464
(100%)

(CF) Removal of a class field (CF-RMV) 661 (2.82%)
Assignment] Change of assignment block Expression (AS-

‘ 49) CE) 1,401 (1%) 1,401 (1%)
[ Loop (LP) [ Change of loop predicate (LP-CC) [ 49 (2.34%) [ 549 (2.34%)|
[ Addition/removal of try statement (TY-ARTC) [ 91 (2.09%) [

‘ Try (TY) | Addition/removal of a catch block (TY-ARCB) | 35(0.15%) | 526 (2.24%)
Switch Addition/removal of switch block branch (SW- 50 (0.21%) 50 (0.21%)

(SW) ARSB)

Table 3: Distributions of newly identified edit patterns
Category [ Pattern Name [ #(%) [ Total (%) [

Local Vari-[ Update impl. of local variable (LV-IMPL) [ 4,043 (15.41%)
able (LV) [ Addition or deletion of Tocal variable (LV-AD) | 3,666 (13.97%)

7,709 (29%)‘

Method Class/target change of method call (MC-TC) 2,881 (10.98%) 7531
¢ eu (;AC) Addition of new method call (MC-A) 2754 (050%) | (5e 000
a Deletion of new method (MC-D) 1,896 (7.23%) R
[ Update impl. of return stat. (RT-IMPL) [ 3.361(1281%) |

’ Return (RT)[ Addition or deletion of return stat. (RT-AD) | 839 (3.20%) | 4200 (16%)
Assignment| Addition or deletion of assignment block stat. 3,390 (12.92%) 3,390
(AS) (AS-AD) (12.92%)
Conslructor[ Addition or deletion of constructor (CT-AD) [ 578 (2.20%) [ 1,013 (4%)
(CT) | Parameter update in constructor (CT-Param) | 435 (1.66%) | 5
Throw [ Update of impl. of throw stat. (TW-IMPL) [ 651 (2.42%) [ 361 (3.28%)
(TW) | Addition or deletion of throw stat. (TW-AD) | 210 (0.80%) | )
Class or In-| - . .
terface (CI) Addition or deletion of class or interface (CI-AD) 480 (2%) 480 (2%)
Wrap  or
Ié::;;rap Wrap/unwrap code with/from high-level Node 410 (1.54%) | 410 (1.54%)
(WU-Code) (WU-Code)

405 (1.54%) | 405 (1.54%)]
130 (0.50%) | 130 (0.50%)|

112 (0.43%) | 112 (0.43%)
Overall total 26,241
(100%)

Loop (LP) [ Addition and/or deletion of loop stat. (LP-AD) [
Catch (CA) [ Addition or deletion of catch variable (CA-AD) [
Enum (EN) [ Addition or deletion of enum stat. (EN-AD) l

*impl.=implementation; stat.=statement

90% of bug-fixing changes. Category SW experiences the lowest
number of bug-fixing changes (0.21%) preceded by LP and TY cate-
gories that consist of only 2.34% and 2.24% of the total number of
PanPatterns, respectively.

The pattern MD-CHG experiences the highest number of bug-
fixing changes (17.54%) followed by the patterns MC-DNP (10.24%)
and IF-APTC (8.42%). Interestingly, those three patterns are from
three distinct categories. MD-ADD, CF-CHG, and MD-RMV are
the next three patterns that experience the highest number of bug-
fixing changes (range from 7.05% to 8.17%) after those formerly
mentioned three patterns. The patterns MC-DM and IF-RMV expe-
rience almost equal amount of bug-fixing changes (~06.70%). Sur-
prisingly, the patterns IF-APC]J, IF-RBR and IF-ABR from IF-related
category together contribute only 1.04% of the total PanPatterns.

public class Math{ public class Math{

public Math( { ... }
; b
}

Figure 5: Insertion of a constructor to fix a bug

int index=checkIndex(; int index=checkIndex();
if(index<=0){ if(index<=0){
throw new NullPointerException(); —>>| return null;

! }
Figure 6: Deletion of a throw statement to fix a bug

int index=checkindex(); int index=checkIndex();
if(index<=0){ ifindex<=0){
throw new NullPointerException(); =} throw new IndexOutOfBoundsException();

} }
Figure 7: Modification of a throw statement to fix a bug

int x=10, y=15; int x=10, y=15;
int sum=Calculator.getSum(x,y) P int sum=MathCalculator.getSum(x,y)

Figure 8: Changing class/target of a method call to fix a bug

Except the patterns SW-ARSB and TY-ARCB (that contribute only
0.21% and 0.15% of the total number of PanPatterns, respectively),
the proportions of the remaining PanPatterns range from 1.32% to
5.77%.

3.3.2  New bug-fixing edit patterns. Using GumtreeSpoon we iden-
tify 17 types of new bug-fixing edit patterns in 11 categories pre-
sented in Table 3. Here, we indicate those bug-fixing edit patterns
as new, which are not defined in PanPatterns. Although some of
those 17 bug-fixing edit patterns are already identified in different
studies [25, 26, 37], we identify completely four new bug-fixing
edit patterns as indicated in Table 3. In the following, we briefly
define the new patterns, which are relatively complex, while some
of those patterns can be easily understood from their names such as
addition or deletion of a method call (MC-AD) or a class/interface
(CI-AD).

Addition or deletion of node N; (N;-AD). This type of pat-
tern consists of addition or deletion of a node N; where N; €
{constructor, throw, loop, enum, return, local variable,assi-
gnment}. For example, in Figure 5, we see a constructor is inserted
in a class to fix abug. Again, in Figure 6, a throw statement is deleted
to fix another bug.

For each of the seven nodes, we define seven patterns, such
as (i) addition or deletion of constructor (CT-AD), (ii) addition
or deletion of throw (TW-AD), (iii) addition or deletion of loop
(LP-AD), (iv) addition or deletion of enum (EN-AD), (v) addition
or deletion of return (RT-AD), (vi) addition or deletion of local
variable (LV-AD) and (vii) addition or deletion of assignment
(AS-AD).

Update implementation of node Nz (N2-IMPL). In this type
of pattern, an implementation of a node N; is updated by per-
forming actions on other nodes associated with the implementing
node. For example, to fix a bug in Figure 7, we see the implemen-
tation of a node throw is changed by updating an associated node
NullPointerException() to IndexOutOfBoundsException().
Here, N; € {throw, return, local variable}. Again, for each
of the three nodes, we define three patterns such as (i) update



for(int i=0si<tokenInFilePath.length;i++)
if(tokenInFilePath[i].contains("Revisions"))
if(tokenInFilePath[i].contains("Revisions"))
projectName=tokenInFilePath[i+1]; ==
return obj.method(p1, p2); projectName=tokenInFilePath[i+1];
) return obj.method(p1, p2);
b
¥

Figure 9: Wrapping up code usir;g a for loop to fix a bug

implementation of throw (TW-IMPL), (ii) update implementation
of return (RT-IMPL) and (iii) update implementation of a local
variable (LV-IMPL).

Class/target change of method call (MC-TC). This pattern
contains those types of bug-fixing changes where the class or target
of a method call is changed to fix a bug. As shown in Figure 8 where
the class of the method getSum is changed to fix a bug.

Parameter update in Constructor (CT-Param). Similar to
pattern MD-CHG, parameters of a constructor can be changed
and such changes belong to this pattern.

Wrap/unwrap code with/from high-level Node (WU-Code).
This pattern of code changes consists of wrapping or unwrapping
existing code with/from high-level nodes. The set of high-level
nodes hincludes {if, for, foreach,while, do-while, synchronized,
try-catch} that can contain other types of nodes. As shown in
Figure 9 a piece of existing code is wrapped up inside a for loop to
fix a bug.

3.3.3 Comparative frequencies of the new patterns. As shown in
Table 3, the category LV consists of the highest number of bug-
fixing changes (29.38%) followed by the categories MC (28.70%), RT
(16.01%), and AS (12.92%). Again, these four categories consist of
almost 90% of newly identified bug-fixing changes.

The pattern LV-IMPL experiences the highest number of bug-
fixing changes (15.41%) followed by the pattern LV-AD (13.97%).
The patterns AS-AD and RT-IMPL experience almost equal amount
of bug-fixing changes (~*13%). Next three patterns MC-TC, MC-
A, and MC-D are from MC categories experience 10.98%, 10.50%,
and 7.23% bug-fixing changes, respectively. Those seven patterns
together contribute almost 84% of bug-fixing changes. The patterns
EN-AD, CA-AD, and TW-AD represent the three lowest bug-fixing
changes (below 1.00%). The amounts of the rest of the patterns
range from 1.50% to 3.20%.

4 DOMINANT NESTING PATTERNS

In Figure 10, we depict the steps required to detect nesting patterns
by capturing the NCSes that frequently host the bug-fixing edits.
The steps are briefly described in the following subsections.

4.1 Pattern Mining of Nested Code Structures

In Section 2.3, we see that an NCS or parents’ tree structure hosting
a bug-fixing edit can be presented as a sequence of parents nodes.
Thus, to identify nesting patterns (i.e., dominant NCSes), we use
a sequential pattern mining technique. Sequential pattern mining
identifies a set of subsequences or patterns that occur in some
percentage or, with minimum support of the input sequences. Any
patterns that are found to have support value above or equal to
the value of minimum support are said to be dominant patterns.
Here, using a sequential pattern mining algorithm, we identify the
nesting patterns that are dominant.
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Figure 10: Steps to identify the nesting patterns

e procedural steps

However, since a frequent long sequence contains a combinato-
rial number of frequent subsequences, such mining will generate
an exhaustive set of patterns, which will be highly expensive in
terms of time and space. To reduce the number of smaller sub-
patterns that are found by the sequential pattern mining algorithm,
we require that a mining algorithm produces closed or maximal pat-
terns [11, 40], where sub-patterns that are contained within longer
patterns are ignored. As we aim to identify nesting patterns of bug-
fixing changes, we find the maximal pattern mining is preferable
in our case.

While there are few commonly used sequential pattern mining
algorithms available [10], we use recently proposed MG-FSM algo-
rithm [27] that meets our requirement to specify constraints such
as pattern type (e.g., closed or maximal) and gap constraint between
two successive nodes. Moreover, the algorithm is capable in parallel
running using map-reduce (Hadoop) functionality. We run the tool
by allowing no gap between two successive nodes to determine
maximal patterns that have at least 1,000 occurrences. The tool
delivers total of 534 sequences that are dominant. We exclude those
patterns that do not have at least one block node to make sure
containment of a node inside another node. Finally, we have 385
nesting patterns that we use for clustering as follows.

4.2 Clustering of Nesting Patterns

At this step, we cluster similar types of nesting patterns in groups.
Such clustering provides a convenient way to characterize and
label the identified nesting patterns manually by experts where
developers commonly perform bug-fixing changes.

To cluster nesting patterns, we use k-medoids [19] algorithm that
is a variant of k-means [18] algorithm. k-medoids is known for more
robustness against noises and outliers compared to k-means [19].
To determine the optimal number of clusters (i.e., k in k-medoids),
we use gap statistic [38] method over other available options, such
as elbow and silhouette methods. We use gap statistic method as it
can be applied to any clustering method (i.e., k-medoids, k-means,
and hierarchical clustering). Using the gap statistic, we find the
number of optimal clusters is 10 for our data.

Defining a distance function for k-medoids. We use the
Longest Common Subsequence (LCS) based string metric to measure
the distance between a pair of mined nesting patterns. We define
the distance function for any two mined nesting patterns S; and Sy

as follows.
| LCS(S1, S2) |

Dres(S1,8p) = 1— —==22102) L
12 == TS 1S D

Here, S and S; are two finite sequences of nodes, | LCS(S1, S2) |
is the length of the longest common subsequence(s) of S; and Sy
and max(| S1 |, | Sz |) is the length of the longest sequence between
51 and 52.



Using the package python-string-similarity [3], we com-
pute the LCS metric values. Then, to cluster nesting patterns, we
run the open source implementation of k-medoids algorithm im-
plemented in the package Pycluster 1.49 [2].

At this point, we have 10 clusters of nesting patterns. As the
mechanism to generate cluster is based on the names of the AST
nodes (i.e., text based clustering), the clusters are required to be
interpreted and characterized by human experts to gain meaningful
insights of the nesting patterns’ clusters.

Table 4: Dominant Nesting Patterns of Bug-Fixing Edits

Category [ ID, Mined Nesting Patterns [ #(%) [ Total (%)

01, if block—if block 27,306 (10.93%)
02, Method invocation block—if 19,430 (7.78%)
block

03, expression block—if block
04, assignment block—if block
05, variable declaration
block—if block

06, throw block—1if block

07, return block—if block

08, Method invocation block as
expression —if block

09, Nested If (with/without else)

16,838 (6.74%)
10,250 (4.10%)
9,996 (4.00%)

IF-related (IF) 101,691 (40.72%)

9,274 (3.71%)
4,923 (1.97%)
3,771 (1.51%)

2,634 (1.05%)

10, block—try block
11, variable
block—catch block
12, Method invocation block—try
block

13, throw block—try-catch block
14, expression block —try block
15, try block—try block

12,321 (4.93%)
5,858 (2.34%)

declaration

Try-Catch (TY-CA) 24,709 (9.89%)

3,197 (1.28%)

1,248 (0.49%
1,048 (0.41%
1,037 (0.41%

)
)
)
)

16, variable declaration 10,202 (04.08%
block— 1oop block
Loop (LP) 17, Method Tnvocation 6,001 (2.40%) 20,029 (8.02%)

block—1loop block
18, expression block—1oop block
19, assignment block— loop block

2,316 (0.92%)
1,510 (0.60%)

Chained Method 20, Chained method invocations 14,828 (05.93%) 14,828 (5.93%)

Invocations
(CMI)
. 21, if block—synchronized block 4,888 (1.95%)

Synchronize (SYN) 22, loop block—synchronized 4,098 (1.64%) 8,986 (3.60%)
block
23, if block—loop block 27,583 (11.04%)
24, 1f block—try block 13,328 (5.33%)
25, Lloop block—if block 6,457 (2.58%)
26, loop block—try block 4,818 (1.92%)
27, try block—if block 3,725 (1.49%)
28, expression block—loop 3,687 (1.47%)
block—if block

Compound (COM) 29, loop block— 1oop block 3,386 (1.35%) 79,484 (31.82%)

30, try block—loop block

31, if block—loop block—if
block

32, switch block—if block

33, if block—1loop block—try
block

34, if block—swi tch block

35, switch block— loop block

2,205 (0.88%)
2,141 (0.85%)

1,413 (0.56%)
1,189 (0.47%)

1,161 (0.46%)
1,145 (0.45%)

36, variable declaration 1,118 (0.44%)
block—if block—1oop block

37, expression block—Iloop 1,026 (0.41%)
block—try block

Overall total | 249,727 (100%)

4.3 Characterization of the Clusters

Using subjective evaluation, each author separately characterizes
the nesting patterns in each cluster in terms of their nodes’ hierar-
chies. By observing nodes’ hierarchies of the patterns, two sets of
nodes are created: (i) a set of low level nodes I, where le {return,
expression, throw, variable declaration, assignment}and (ii)
another set of high level nodes h defined in Section 3.3.2.
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Each author aims to identify if a low label node’s block from [ is
contained in a high-level node block from h. Such an identification
is represented as a pattern/cluster [ block—h block. For example, if
a block of return is located inside an if block, then the authors
label that hierarchy as return block—if block. If a higher-level
node block hy is contained in another high-level node block Az,
then that pattern is categorized as ‘Compound’ and represented
as hy block—h;y block. In a similar fashion, deeper-levels’ contain-
ments/hierarchies can also be presented (see the second column of
the last row in Table 4).

Cohen’s kappa coefficient x [7] is used to measure agreement be-
tween two authors in charatcterizing patterns. k value 0.79 indicates
high-level agreement on the characterization of the patterns of the
clusters. For each disagreement, authors discuss between them, and
if necessary, they verify raw data to come to an agreement. Such
discussions result in an unconventional pattern that has chained
method invocations (e.g., m1().m2().m3()) in a single block (see the
fourth category in Table 4). Finally, total of 37 meaningful clus-
ters is identified in six categories: (i) IF-related (IF), (ii) Try-Catch
(TY-CA) (iii) Loop (LP) (iv) Chained Method Invocation (CMI) (v)
Synchronize (SYN) and (vi) Compound (COM) as presented in Ta-
ble 4. As per the definition of the category COM, the category
SYN falls in the COM category, although the authors decide to
create a separate category for it. As all the patterns are ended with
Method_declaration—Type_declaration—Compilation_unit,
we truncate that for better presentation.

4.4

There are nine types of nesting patterns or clusters belong to the
IF category that represents the largest amount (40.72%) of the total
number of patterns followed by the COM category that consists
of 15 types of patterns contribute to 31.82% of the total number of
patterns. The categories TY-CA and LP contribute 9.89% and 8.02%
of total patterns, respectively, followed by the CMI category that
consists of 5.93% of total patterns. The number of patterns belongs
to the SYN category is the lowest (3.60%).

By inspecting individual clusters, we find some interesting pat-
terns that can not be identified without considering hierarchies of
NCSes. The 23rd cluster (i.e., if block—1loop block) is the most
bug prone pattern as it experiences the highest number (27,583)
bug-fix changes followed by the first cluster if block—if block,
which is slightly lower than the former cluster. Noticeable, the
number of bug-fix changes in a pattern [ block—if block is always
higher than a pattern ! block—h’ block, where h’ = h—if. For
example, the number of occurrences of the pattern expression
block—if block is higher than the number of occurrences of the
pattern expression block—1loop block. Recalling that [ represents
the set of low level nodes.

It is very interesting that throw blocks inside if blocks are more
bug-prone than throw blocks inside try-catch blocks. Although
in Table 2 we see the number of changes in the category Try (TY) is
very low, the opposite result is observed in Table 4, where category
related to Try (TY-CA) experiences the second highest bug-fix
changes among the categories of simple high-level nodes. It means
that pieces of code inside try-catch frequently experience bug-
fix changes. A similar observation is also applicable to the SYN
category.

Mining Results



Surprisingly, only five clusters among 37 clusters contain three-
levels containment (see clusters 28, 31, 33, 36, and 37), which consist
of only 3.64% of all patterns. The pattern expression block—loop
block—1if block consists of almost 50% of all those three-levels
patterns. No pattern is found that contains more than three-levels
containment.

5 THREATS TO VALIDITY

Construct Validity. For the first three projects, we use the bug-
fixing commits that are identified by Ray et al. [35]. To distinguish
those bug-fixing commits, they used a technique similar to the
approach of Mockus and Votta [28]. The same approach is used for
detecting bug-fixing commits of the last two projects. The accuracy
of this approach may be questioned. However, this approach was
reported 96% accurate [35].

To detect bug-fixing edit patterns, we have considered only nodes
found before the occurrence of the first block node (if available)
in a NCS. Someone may be skeptical in capabilities of detecting
bug-fixing edit patterns using such an approach. However, our
approach is found successful in detecting not only existing bug-
fixing edit patterns but also new bug-fixing edit patterns from
code bases. To detect nesting patterns, we have identified maximal
patterns instead of closed patterns of nested code structures. Closed
sequential pattern mining algorithms remove all patterns that exist
within other identified patterns and occur at the same support level,
while maximal pattern mining removes sub-patterns regardless of
the support level. For our problem, the maximal pattern mining
is preferable, as we have aimed to identify deeper nested code
structures instead of sub-structures (i.e., sub-patterns).

In capturing the maximal patterns, we have allowed no gap be-
tween two nodes and only considered those as patterns, which have
at least 1,000 occurrences. To detect exact nested code structures,
it is obvious that setting “no gap between two nodes" is the best
choice. Although the setting of 1,000 as the threshold can be crit-
icized, we have found the setting was capable of retaining over
70% bug-fixing transactions, while minimized human efforts in
detecting meaningful clusters.

Internal Validity. The correctness of our analysis depends on
both GumTree and GumtreeSpoon tools, which are used to answer
RQ2 and RQ1, respectively. The former tool outperforms the state-
of-the-art tool ChangeDistiller by maximizing the number of
AST node mappings, minimizing the edit script size, and detect-
ing better move actions [8]. Moreover, ChangeDistiller works at
the statement level, preventing the detection of certain fine-grain
patterns.

Similar to GumtreeSpoon, there is another tool C1Diff [14] also
available. Between C1Diff and GumtreeSpoon, we selected the lat-
ter tool for addressing RQ1, because, from a sample test run, we
revealed that C1Diff failed in distinguishing changes to method
parameters at its concise level outputs. But, for this work on bug-
fixing edit patterns, this capability is very important for capturing
subtle changes in a code made for bug-fixing [33]. The library
JGit [4] is used in our work to extract a buggy and its previous
revisions. This library was also applied for similar purposes in other
studies [12, 31].

External Validity. Although our study includes a large number
of revisions of five subject systems, all the systems are open-source
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and written in Java. Thus, the findings from this work may not
be generalizable for industrial systems and source code written in
languages other than Java.

Reliability. The methodology of this study including the proce-
dures for data collection and analysis are documented in this paper.
The subject systems being open-source, are freely accessible while
the tools GumTree, GumtreeSpoon, MG-FSM, and library JGit are
also available online. Therefore, it should be possible to replicate
the study.

6 RELATED WORK

Pan et al. [33] manually identified a set of 27 bug-fixing edit patterns
(i.e., PanPatterns) by exploiting textual differences between buggy
and non-buggy programs. A similar approach was also applied
by Yue et al. [41] to identify 11 bug-fixing edit patterns, however,
they used clustering technique to minimize manual efforts. Both
studies are subject to few limitations: (i) obviously identifying all
possible bug-fixing edit patterns using manual effort is a daunting
task, which arises possibility of failure in discovering all types
of bug-fixing edit patterns, and (ii) they used textual differences
between buggy and non-buggy programs to identify bug-fixing edit
patterns, which is reported to be limited in detecting bug-fixing
edit patterns [8].

Despite few limitations, the study of Pan et al. is the most in-
fluential work (in terms of citation numbers) in the related area
and till now they have identified the highest number of bug-fixing
edit patterns in code bases. That is why we started our work by
targeting this study to identify bug-fixing edit patterns (while at
the same time we kept an eye on any new or unseen patterns).
Instead of textual difference, we have used a state-of-the-art AST
based code differencing tool GumtreeSpoon and developed a fully
automated approach to detect bug-fixing edit patterns. Moreover,
we have detected 37 bug-fixing edit patterns, which is the highest
among all the studies [21, 25, 26, 33, 37] carried out to identify
bug-fixing edit patterns till date. In addition, we have identified
four new patterns in Constructor, Catch and Enum categories (see
Table 3).

Kim et al. [21] also employed manual efforts to identify a set of
10 dominant bug-fixing edit patterns (known as PAR templates).
However, to collect bug-fixing patches they used Kenyon frame-
work [5] and clustered those patches using groums [30] to minimize
human efforts. Again, Sobreira et al. [37] manually analyzed only
395 patches collected from Defects4F [20] project and identified 25
bug-fixing edit patterns. Although the latter study identified the
second highest number bug-fixing edit patterns after PanPatterns
and identified few new patterns too, the work was conducted on a
very small dataset. Thus, additional studies are required to verify
their newly identified bug-fixing edit patterns related to return,
throw and wrap/unwarp-code using larger datasets and our work
can be considered such a work that verifies those new patterns
are dominant in bug-fixing changes. Moreover, they identified 33
instances of a pattern where throw blocks reside in if blocks. The
sixth cluster in Table 4 confirms such finding of their study. In ad-
dition, in a very recent study, Tufano et al. [39] manually identified
new patterns of only five instances related to synchronized blocks’
additions and deletions. The question is “can we consider those
as patterns with only five instances?". Our study can answer this



question as ‘yes’ by observing the 21st and 22nd clusters in the SYN
category presented in Table 4.

To overcome the problems of manual approaches, automatic tech-
niques are developed to identify bug-fixing edit patterns. Martinez
and Monperrus [26] identified 20 bug-fixing edit patterns using
the AST based code differencing tool ChangeDistiller [9]. In our
study, we have used the tool GumtreeSpoon [1] developed based
on GumTree [8], which is more accurate than ChangeDistiller.

Few other studies [24, 32] identified fixing patterns of violations
of static coding principles. However, in our study, we have studied
real bug-fixing changes instead of coding principles’ violations.

7 CONCLUSION

In this paper, we have reported 38 bug-fixing edit patterns, which
is the highest number of bug-fixing edit patterns identified in a
single study. Moreover, we have discovered four new bug-fixing
edit patterns. The rest 34 identified bug-fixing edit patterns confirm
those reported earlier.

Using sequential pattern mining and clustering techniques, we
have also exposed 37 new bug-fixing nesting patterns, which capture
the locations of the bug-fixing edits within the nested code structure
surrounding them. These new set of nesting patterns is a novel
contribution that adds a new dimension to our understanding of
bug-fixing patterns.

Our analysis of the nesting patterns reveals additional insights
into bug-fix patterns. We have found that any nodes/blocks associ-
ated with if blocks are the most bug-prone. The nesting pattern “if
block inside 1oop block” experience the highest number bug-fixing
edits, followed by the “if block inside another if block” nesting
pattern. Moreover, for the first time in this study, we have discov-
ered that nesting patterns in CMI category experience a significant
number of bug-fixing edits. Our analysis of the nesting patterns
also indicates nodes/blocks inside try-catch and synchronized
are bug-prone.

The findings from this work are derived from both quantitative
and qualitative analyses that deepen our understanding of bug-fix
patterns. Both the bug-fixing edit patterns and nesting patterns can
also be useful in devising techniques for automated program repair.
For example, existing probabilistic patch generation algorithms can
incorporate patterns of bug-fix edits and their locations in nested
code structures to maximize the probabilities of locating bug and
generating patches for those bugs successfully. Our future work
will explore these possibilities.
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