What Changes in Where?
An Empirical Study of Bug-Fixing Change Patterns

Md Rakibul Islam
University of Wisconsin - Eau Claire
Eau Claire, Wisconsin, USA
islamm@uwec.edu

ABSTRACT

A deep understanding of the common patterns of bug-fixing
changes is useful in several ways: (a) such knowledge can
help developers in proactively avoiding coding patterns that
lead to bugs and (b) bug-fixing patterns are exploited in
devising techniques for automatic bug localization and pro-
gram repair.

This work includes an in-depth quantitative and qualitative
analysis over 4,653 buggy revisions of five software systems.
Our study identifies 38 bug-fixing edit patterns and discovers
37 new patterns of nested code structures, which frequently
host the bug-fixing edits. While some of the edit patterns
were reported in earlier studies, these nesting patterns are
new and were never targeted before.

CCS Concepts

eSoftware and its engineering — Maintaining software; Em-
pirical software validation; Correctness; Error handling and
recovery; Software defect analysis; Correctness; Software re-
liability; Error handling and recovery; Software defect anal-
ysis; Empirical software validation; Maintaining software;

Keywords

Software; Defect; Bug; Fault; Error; Vulnerability; Source
Code; Edits; Nesting; Pattern; Empirical Study; Analysis

1. INTRODUCTION

Technology today rarely exists without a software compo-
nent or interface as more and more systems are being soft-
ware operated. But, incidents of software failures and vul-
nerabilities repeatedly make news headlines since the emer-
gence of software to date. In 2017 alone, almost $1.7 trillion
in assets, and 3.7 billion people were affected by software
failures [22].

These software failures occur primarily due to software bugs
or defects (a subset of which are exploitable security vulner-
abilities). There are mainly two mutually complementary
approaches to minimize software bugs. First, the software
developers must proactively adopt defensive programming

Copyright is held by the authors. This work is based on an earlier work: SAC’20
Proceedings of the 2020 ACM Symposium on Applied Computing, Copyright
2020 ACM 978-1-4503-6866-7. http://dx.doi.org/10.1145/3341105.3373880

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

Minhaz F. Zibran
University of New Orleans
New Orleans, Louisiana, USA
zibran@cs.uno.edu

practices to avoid common coding patterns, which result in
software defects. Second, (semi-)automated techniques for
the detection and refactoring of bug-prone code patterns can
help in program sanitization for minimizing software bugs.

Till date, bug-fixing activities heavily depend on human ef-
forts and consume a vast amount of total expenses in soft-
ware maintenance [14] while nearly 80% of software cost is
spent in maintenance [27]. Typical bug-fixing efforts mainly
involve two types of tasks: (a) bug localization and (b) bug-
fixing edits.

Bug localization deals with identifying the locations of the
faulty pieces of code that cause the program to malfunc-
tion or remain vulnerable. Bug-fixing edits include subtle
changes to program’s source code elements, such as replace-
ment of literals and insertion of conditionals, to eliminate the
defect. Thus, a bug-fixing change encompasses two things:
the edits made to the program elements and the location of
those edits in the program’s nested code hierarchy. There-
fore, with respect to bug-fixing changes, we define the fol-
lowing two terminologies:

Bug-fixing edit patterns, which include the most frequent
edit operations made to program elements for fixing
a bug.

Bug-fixing nesting patterns, which include the most com-
mon locations in source code characterized as the nest-
ing levels of code constructs that frequently host bug-
fixing edits.

As bug-fixing changes indicate the locations of the buggy
code and the original program elements found defective, a
deep understanding of the common bug-fixing patterns can
immensely help in minimizing efforts in both of the afore-
mentioned two types of tasks (i.e., bug localization and ed-
its) and can also contribute to devising techniques for au-
tomated program repair. A good understanding of the bug
patterns can also help a developer to proactively avoid writ-
ing code that leads to program faults.

Bug-fixing efforts require a good understanding of the source
code, intended edits, and their potential impacts. Stud-
ies [40, 42] find that code changes are repetitive in nature
within and across code bases. Hence, mining code changes
has become an effective way for program comprehension and
deriving patterns of diverse categories including bug-fix pat-
terns.

18

Early efforts in discovering bug-fix patterns highly depended
on manual efforts [40, 57] in the analysis of textual differ-
ences among different program entities. However, manual
effort is criticized for being error-prone, tedious, incomplete,
and imprecise [17, 26, 45]. Recent efforts made use of Ab-
stract Syntax Tree (AST) based code differencing tools (e.g.,
ChangeDistiller [19], Diff/TS [25] and GumTree [17]) for
automatic discovery of code-changes and differencing pro-
gram entities.

Previous work on discovering bug-fix patterns remained fo-
cused on bug-fixing edit patterns, which include bug-fixing
changes to source code at a very fine-grained level without
capturing those changes’ surrounding code contexts such as
nested code structures. The nested code structure, which is
a hierarchy of AST nodes, indicates the location of a bug-fix
change in an AST nodes’ hierarchy. Nested code structures
provide an important code context/aspect of bug-fix changes
but remained absent in the studies [17, 38, 45, 46, 47, 57,
63, 69] that identified bug-fixing edit patterns.

In this work, we capture both bug-fixing edit patterns and
nesting patterns (i.e., frequent nested code structures) of
bug-fixing edits through an in-depth (quantitative and qual-
itative) analysis of 4,653 buggy revisions of five software sys-
tems drawn from diverse application domains. We organize
this paper around two research questions as follows:

RQ1: What are the common patterns of bug-fixing edits?

— Here, we explore the subtle edits/changes made in source
code for fixing bugs and we identify the bug-fixing edit pat-
terns. We will verify what portion of the identified bug-
fixing edit patterns are new, and how many of them were
previously reported in earlier studies [47, 57, 63].

RQ2: What are the prominent nested code structures that
frequently host bug-fixing edits?

— Here we investigate the frequent nested code structures
(i-e., nesting patterns) where the bug-fixing edits are com-
monly located. These nesting patterns will directly con-
tribute to bug localization, and will complement the edit
patterns in our understanding of bug-fixing patterns with
information about the locations and contexts of individual
edits within surrounded nested code structures. Moreover,
such AST based nested code structure contexts provide a
potential scope to use those along with other code contexts
such as teztual similarity of code [62] to develop an effective
technique to automatically locate program faults and repair
those.

Contributions: Towards a deeper understanding of bug-fix
patterns, this paper makes two major contributions:

e We identify a total of 38 bug-fix patterns organized in
14 categories. This is the highest number of bug-fix
patterns identified in a single study. Four of these pat-
terns are completely new, and the rest 34 edit patterns
confirm those reported in earlier studies.

e We study locations of bug-fix changes in nested code
structures and identify 37 nesting patterns (organized
in six categories) that hold the majority of the bug-
fixing edits. These nesting patterns are new (i.e., never

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

targeted before), and add a new dimension in our un-
derstanding of bug-fix patterns.

This paper is an extension of our recently published work [33].
Especially, we have included here a deeper analysis, more
detailed findings with additional results, as well as a more
elaborated discussion of the methodology and results.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the methodology of this study including
short descriptions of the dataset and tools used. In Section 3,
we identify dominant bug-fixing edit patterns and answer
RQ1. To answer RQ2, in Section 3, we derive the nesting
patterns by distinguishing those nested code structures that
host frequent bug-fix edits. In Section 5, we describe possi-
ble limitations and the threats to the validity of this work.
Related work is discussed in Section 6. Finally, Section 7
concludes the paper with future research directions.

2. METHODOLOGY

The procedural steps of our empirical study are summa-
rized in Figure 1. For each subject system, we collect the
bug-fixing revisions. Then, for each bug-fixing revision, us-
ing AST based code differencing tools, we detect differences
between the bug-fixing revision and its immediate previous
revision. Collections of such AST differences are then ana-
lyzed to detect bug-fixing edit patterns and dominant nested
code structures of code changes to fix bugs. In the following,
we describe the subject systems and elaborate the procedu-
ral steps with necessary details.

2.1 Subject Systems

We study 4,653 revisions of five open-source software sys-
tems written in Java. These subject systems, as listed in
Table 1, are available at GitHub. In Table 1, we present
the total number of revisions and the number of source lines
of code in the last revision. Here, KLOC denotes a thou-
sand lines of code. We choose these five subject systems as
these systems have variations in application domains, sizes,
number of revisions, and are also used in other studies [31,
59].

Moreover, the selected five subject systems can be classified
into two sets: (i) the first three subject systems, which were
never been used earlier to detect bug-fixing edit patterns,
belong to the first set, and (ii) the second set consists of the
remaining two subject systems, which were earlier used in
other studies [62]. Such a combination of selected subject
systems provides the opportunity not only to verify the ex-
istence of previously reported bug-fixing edit patterns but
also to identify new bug-fixing edit patterns if they exist in
our dataset.

2.2 Distinguishing Bug-fixing Commits

For the top three systems in Table 1, we collect the bug-
fixing commits identified by Ray et al. [59]. These three
systems (i.e., Netty, Presto, and Facebook SDK for Android)
were also used in other studies [31, 32].

The method for distinguishing the bug-fixing commits for a
project/system is as follows. The commit messages associ-
ated with each commit during development of a project were

19

—
Git Obtain 1 AST - 5 -
i : Identif Bug-fixin
Repository (n-1)th (n-1)th Identify AST changes | buge-?ixlizg %dit o
- = o (buggy) revision >\ differences between patterns
revision

Bug-Fixi
Commits

/

Qe | /
?)
1

A edit patterns
versions 4
/

for Bug-fixing " —
System commit | - n >
P1 c (bug-Fixing) revision

revision

Identif AST I *Identify Nesting
y h 1 nested cod patterns of
AST cnanges |- ested code bug-fixing edits
differences between | | structures
versions | | A ~
| /e o T,

. This step-6 is further :
\ elaborated in Figure 10

Figure 1: Procedural steps (enumerated) to identify edit patterns and nesting patterns of bug-fixing changes

Table 1: Subject systems used in this work

Subject System Short Description KLOC | Total # of | # of Bug-

(Application Domain) (last rev.) | Revisions | Fixing Rev.
Netty [6] Event-driven network appication framework 1,078 8,534 1,103
Presto [8] Distributed SQL query engine for big data 2,869 11,909 841

Facebook SDK for Android [3]

Social networking app. development framework 172 671 133

Apache Accumulo [1] Distributed key-value store 458 9,734 1,941
Apache Common-maths [2] Math library of math and statistics components 187 6,971 635
| Total over all the systems | 4,764 | 37,819 | 4,653 |

analyzed using standard natural language processing tech-
niques. Each commit message was first converted to a bag of
words, which was then stemmed. A commit is characterized
as a bug-fixing commit, if the corresponding stemmed bag of
words include one or more of the following keywords: ‘bug’,
‘defect’, ‘fault’, ‘flaw’, ‘error’, ‘mistake’, ‘incorrect’, ‘issue’,
‘fix’, and ‘type’.

This approach for distinguishing bug-fixing commits was
used in research [59, 50] and was reported 96% accurate [59].
To identify the bug-fixing commits in the remaining last two
systems, we use the same keywords and approach as de-
scribed above. The number of bug-fixing revisions for each
system is listed in the right-most column of Table 1.

2.3 Computing AST-Differences

Consider a bug-fixing commit C resulting in the n*" revision
of a system/project Pi. If a particular line of code L is
modified in the bug-fixing commit C, then it implies that
the modification is necessary to fix the bug. Thus, the line
of code £ in the (n — 1)™ revision is considered a buggy
line. In other words, we consider the changes between the
n'™ and (n — 1) revisions of P; are buggy. Several other
studies [28, 29, 52, 58] also adopted the similar approach for
distinguishing buggy source code.

At this level, as shown in Figure 1, we obtain the n'® and
(n — 1)™ revisions using JGit [5]. Then, we capture bug-
fixing changes at the AST [17] level between those two re-
visions using GumtreeSpoon and Gumtree separately (see ac-

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

tion 03 and 04 in Figure 1). Captured AST differences using
GumtreeSpoon and Gumtree are further processed to deter-
mine bug-fixing edit patterns and nesting patterns, respec-
tively (see action 05 and 06 in Figure 1).

Before describing how we identify bug-fixing edit patterns
(in Section 3) and nesting patterns (in Section 4), in the fol-
lowing, we discuss and compare the outputs of GumTree and
GumtreeSpoon to develop background/context that helps in
understanding the rest of the content of the paper.

2.3.1 Interpreting GumTree’s output

For each action/change in a node, GumTree generates four
major attributes: (i) action name (e.g., ins, del, upd or,
mov) (ii) label- that indicates text/name of the changed node
(iii) type of the changed node (e.g., changed node can be a
simple variable name or an expression) and (iv) nested
code structure (NCS)- the tree/hierarchy of parent nodes
of the changed node, which indicates the location of the
changed node in an AST. We use these four attributes: (ac-
tion name, node type, label, NCS) to represent a changed
AST node.

Let’s assume, there is a bug in a piece of code presented
at the left side of the arrow sign in Figure 2(a). The bug
resides in line number five where a developer uses literal ‘3’
instead of literal ‘2’. The buggy code is fixed in the bug-fix
revision, which is presented at the right side of the arrow sign
in Figure 2(a). If those two revisions are given to GumTree,
it will generate differences between the provided revisions,

20

Buggy code

public class Calculator{
public int getSumOfEvenNums(Int[] nums){
int sum=0;
for(int i=0;i<nums.length;i++){

Bug-fixed code

sum=sum-+numsi];
}
}

1
2
3
4
5 if(numsli]%3==0){ // buggy line
6
7
8
9 return sum;

1 public class Calculator{

2 public int getSumOfEvenNums(Int[] nums){

3 int sum=0;

4 for(int i=0; ixnums.length; i++){

5 if(nums(i]%2==0){ //bug-fixing change
> 6 sum=sum-+numsl[i];

7 }

8 }

9 return sum;

10 }

11}

(Update, NumberLiteral, 3, Infix_expression—
Infix_expression—If_statement—Block—For_statement—Block—M
ehod_declaration—Type_declaration—>Compilation_unit)

(Update, Literal, rightOperand, 3 to 2, CtBinaryOperatorlmpl— CtBi-
naryOperatorImpl—CtIflmpl —CtBlockImpl—CtForImpl—CtBlock-
Impl—CtMethodImpl— CtClassImpl—>CtModellmpl$CtRootPackage)

(b)

Figure 2:
GumTree and (c) GumtreeSpoon

which can be presented using a tuple of four attributes as
shown in Figure 2(b).

From Figure 2(b), it is easily understood that a Number-
Literal is updated to fix the bug. From the NCS (the last
attribute) of the updated node, we see the NumberLiteral
is a part of two infix_expressions (i.e., == and %), which
reside in an if statement. Again, the if statement resides
in a block under a for statement. The for statement is a
part of a block inside a method. The method resides inside
a type declaration (i.e., a class) and compilation unit is al-
ways the root of an NCS. Here, it is noticeable that an NCS
represents a sequence, where the root and all internal nodes
have only one child except the leaf node, which has no child.

2.3.2 Interpreting of GumtreeSpoon’s output

While the output of GumtreeSpoon is almost similar to that
of GumTree, there are some fundamental differences exist be-
tween their outputs. First, GumtreeSpoon provides a changed
node’s role in its immediate parent or node (i.e., role in par-
ent), which helps in understanding code changes’ patterns.
For example, GumtreeSpoon indicates that the changed 1it-
eral’s role in its parent is rightOperand. How the attribute
role in parent helps in determining bug-fixing edit patterns
is elaborately described in Algorithm 1 presented latter in
this paper.

Second, GumtreeSpoon provides modified source code as op-
posed to the label provided by GumTree. We find modified
source code is more helpful to understand bug-fixing edit
patterns (see Section 3.2) instead of a label. Thus, we use
a tuple of five attributes such as (action name, node type,
role in parent, modified source code, nested code structure)
to represent a code change using GumtreeSpoon’s output as
shown in Figure 2(c). It is noticeable in Figure 2(b) and 2(c)
that naming conventions of the nodes are different between
GumTree and GumtreeSpoon.

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

©

(a) Changing a literal in an if statement to fix a bug and the presentations of the bug-fixing change using (b)

public class Math{ public class Math{
public void sum(int a, int b){ public void sum(int a, int b){
int c = a+b; = if(al=b){
} int c = a+b;
} }
}
}

(@)

(Insert, If, Statement, if (@ !=Db) {; },
CtBlocklmpl— CtMethodImpl— CtClassImpl—CtModellmpl$Ct-
RootPackage)

(o)

Figure 3: (a) Adding an if statement as a precondition to
fix a bug, (b) corresponding representation of the bug-fixing
change using GumtreeSpoon

Finally, while GumTree provides fine-grained level differences,
GumtreeSpoon generates summary/concise level outputs of
code changes that help in understanding bug-fixing edit pat-
terns conveniently. For example, the code changes shown
in Figure 3(a), is represented using GumtreeSpoon’s output
in Figure 3(b). From Figure 3(b), we see that only node
if is inserted, thus GumtreeSpoon ignores other fine-grained
level changes such as additions of conditional operator
and variables (e.g., a and b). In contrast to that, GumTree’s
outputs indicate that five nodes are inserted: insert block,
wmsert ifStatement, insert infitEzpression (i.e., ==), and in-
sert simpleNames (i.e., variables a and b). While these de-
tailed, in-depth, and verbose outputs provided by GumTree
are suitable to analyze nesting patterns in deeper levels to
answer RQ2, the concised outputs of GumTreeSpoon are re-
quired for analyzing bug-fixing edit patterns to answer RQ1.

21

public class Math{
public void sum(float a, int b)

public class Math{
public void sum(int a, int b)

float ¢ = a+b;

} }
} }
(@)

float ¢ = a+b;

(Update, TypeReference, float to int, type, CtParameterimpl—
CtMethodIimpl— CtClassImpl— CtModellmpl$CtRootPackage)

(b)

Figure 4: (a) Updating parameter type (float to int) of a
method to fix a bug and (b) corresponding representation of
the bug-fixing change using GumtreeSpoon

3. CAPTURING THE EDIT PATTERNS

Once we have the GumtreeSpoon’s outputs for the bug-fixing
changes, we aim to identify the bug-fixing edit patterns de-
fined by Pan et al. [57]. Pan et al. have defined a set of 27
bug-fixing edit patterns divided in nine categories: If-related
(IF), Method Calls (MC), Sequence (SQ), Loop (LP), As-
signment (AS), Switch (SW), Try (TY), Method Declaration
(MD) and Class Field (CF).

Their study has identified the highest number of bug-fixing
edit patterns in a single study. Moreover, according to the
number of citations, this is one of the most important papers
on bug-fix edit patterns, thus it becomes a benchmark for
the studies related to bug-fixing edit patterns’ detection. In
the rest of this paper, we use the term PanPattern to refer
to a pattern identified by Pan et al. [57]. We also verify
whether GumtreeSpoon is able to identify any new bug-fixing
edit patterns as opposed to the PanPatterns in our dataset.

3.1 Processing GumtreeSpoon’s Output

While a portion of GumtreeSpoon’s outputs are readily in-
terpretable, in most cases, we need to further analyze each
individual NCS to detect bug-fixing edit patterns. Thus, we
further process/manipulate the GumtreeSpoon’s output us-
ing Algorithm 1, to make those more obvious for our analy-
sis.

Based on a preliminary investigation, we find that a code
change belongs to or impacts the node that is an immediate
previous node of the first occurrence of a block node in an
NCS. For example, from the bug-fixing change presented in
Figure 2(a), it is not obvious that the change occurs in an if
statement until we see the immediate previous node of the
first block node (which is indeed an if node) in the NCS
given in Figure 2(c) generated by GumtreeSpoon.

When an NCS contains at least one block node, we deter-
mine the pattern of a bug-fixing change using the procedure
described in Algorithm 1, Lines 2-8. An NCS starts with
a block node if an insertion or deletion or update is per-
formed on a node, which is not contained in or associated
or linked with any other node within its block. As shown in
Figure 3(b), a node If is inserted and the NCS starts with
a block node. The pattern for this type of bug-fix changes

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

is determined using the action (i.e., ins/del/upd) performed
on a node to change code, and the name of the changed node
as shown in Algorithm 1, Lines 3—4.

Another category of bug-fix changes contains those type of
patterns where the implementation of a node is updated
by performing an action on any other nodes, which are con-
tained in or associated or linked with the implementing node
within its block. As shown in Figure 2(a), a 1iteral node,
which is contained in an implementing if node, is updated
where both the nodes (i.e., if and literal) reside in the
same block. In this case, the bug-fixing edit pattern is deter-
mined using action, changed node name, and the immediate
previous node’s name of the first occurrence of a block node
in an NCS (see Algorithm 1, Lines 6-7).

The third category of bug-fix edit patterns does not have
any block node in the NCSes for changes in the definitions
of class or interface members such as addition/removal of
class fields or methods or changes in the types of param-
eters of methods. As shown in Figure 4(a), a developer
updates type of a parameter from float to int to fix a
bug. Figure 4(b) represents the change using the output
of GumtreeSpoon where the NCS does not have any block
node. For this case, we identify a bug-fixing edit pattern
by incorporating a changed node’s role in parent attribute,
and consider the first node in the NCS as the location of the
change.

If a class member (e.g., method, variable) or a parameter
of a method is changed, we use action, node name, and the
first node in the NCS to determine the pattern of the bug-
fix change (see Algorithm 1, Lines 10-14). If the type a
class variable or method’s parameter is changed, then we
determine the location of the change (e.g., type of a class
variable or method’s parameter) (see Algorithm 1, Line 16),
and use that along with action and node name to determine
the bug-fix pattern (see Algorithm 1, Line 17).

For the bug-fixing changes presented in Figure 2(a), Fig-
ure 3(a), and Figure 4(a), Algorithm 1 will output the pat-
terns update literal of CtIfImpl, insert if, and update type of
a parameter of a method, respectively. The set of patterns
that we identify using Algorithm 1 are termed as GSPatterns
in the rest of this paper.

3.2 Mapping GSPatterns to PanPatterns

In most cases, a GSPattern can be mapped directly to its
corresponding PanPattern. For example, the GSPattern up-
date literal of CtIflmp indicates its corresponding PanPat-
tern change of if condition expression (IF-CC) [57].

However, we have to leverage the attribute “modified source
code” to accurately identify PanPatterns from their corre-
sponding GSPatterns in two cases that include: (i) addition
of a precondition (i.e., if node) check with/without jump
statement (e.g., return, and break) and (ii) changes in a
method call.

In the first case, we leverage modified source code to identify
whether an inserted ‘If’ statement acts as a precondition or
not. An inserted if statement acts as a precondition, if it
wraps up existing code, otherwise, that will be considered
as a new insertion of an if node.

22

Algorithm 1: Detection of GSPatterns

Input: T : a tuple of five attributes generated by
GumtreeSpoon for a code change

1 String pattern;
2 if T.NCS.contains(“Block”) then

3 if T.NCS.startsWith(“Block”) then

4 ‘ pattern+T.action+*“ "+ T.nodeName;

5 else

6 String
IPN<—getPreviousNodeOfFirstBlock(T.NCS);

7 pattern«+T.action +“ ” + T.nodeName + “ of
7+ IPN;

8 end

9 else

10 String FNN«getFirstNodeInNCS(T.NCS);
11 if T.roleInParent.equals(“typeMember”) then

12 pattern+T.action +*“ "+ T.nodeName+* in ”
+ FNN;

13 else if T.roleInParent.equals(“parameter”) then

14 pattern«+T.action +*“ "+ T.nodeName+* in ”
+ FNN;

15 else if T.roleInParent.equals(“type”) then

16 String CFL«—getChangeLocation(T.NCS);

17 pattern«+T.action +“ "4+ T.nodeName +“ in ”
+ CFL;

18 end

19 return pattern;

For any inserted if node, if we find modified source code
contains any lone semicolon (;) in a line, then the inserted
if statement/node is considered as a precondition. For ex-
ample, the modified source code, presented in Figure 3(b),
contains a lone semicolon in the bug-fixing change presented
in Figure 3(a). The number of such lone semicolons indi-
cates the number of lines wrapped up by a precondition. In
addition to semicolons, we also check whether the modified
source code contains any jump statement such as return,
continue, or break to identify if any precondition is added
with a jump that corresponds to another PanPattern addi-
tion of a precondition check with a jump (IF-APCJ).

We use the same logic to identify if a piece of code is wrapped
up by statements, such as try-catch, loop, or switch-case.
We hypothesize that an inserted if is added as post-condition,
if that is not a precondition.

In the second case, we parse modified source code to extract
the method call statements in a buggy revision and its non-
buggy revision. Then, for each method call, we extract the
method name, arguments, and class name of a method call
if available. Then, we compare that extracted information
between the buggy and non-buggy method call statements
to identify the location where a change occurs to map the
change to its corresponding PanPattern. Multiple changes
may occur in a method call (e.g., the return type can be
changed and an argument can be inserted) to fix a buggy
method call. In such cases, we record all types of changes
and use those to identify bug-fixing edit patterns.

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

3.3 Dominant Bug-fixing Edit Patterns

In this section, we identify and describe the dominant bug-
fixing edit patterns, which includes the most frequent edits
found to have been applied for fixing bugs.

3.3.1 Detected PanPatterns

By processing GumtreeSpoon’s outputs we are able to de-
tect 21 types of PanPatterns distributed in seven categories
presented in Table 2. The abbreviations/initials of the cat-
egories and patterns’ names are given in the same table.
The MD category contains the highest number of bug-fixing
changes (33.00%), followed by the IF (20.78%), MC (20.00%),
and CF (16.00%) categories. Noticeable, the first four cate-
gories consist of almost 90% of bug-fixing changes. Category
SW experiences the lowest number of bug-fixing changes
(0.21%) preceded by LP and TY categories that consist of
only 2.34% and 2.24% of the total number of PanPatterns,
respectively.

The pattern MD-CHG experiences the highest number of
bug-fixing changes (17.54%) followed by the patterns MC-
DNP (10.24%) and IF-APTC (8.42%). Interestingly, those
three patterns are from three distinct categories. MD-ADD,
CF-CHG, and MD-RMYV are the next three patterns that
experience the highest number of bug-fixing changes (range
from 7.05% to 8.17%) after those formerly mentioned three
patterns.

The patterns MC-DM and IF-RMV experience almost equal
amount of bug-fixing changes (~06.70%). Surprisingly, the
patterns IF-APCJ, IF-RBR and IF-ABR from IF-related
category together contribute only 1.04% of the total Pan-
Patterns. Except for the patterns SW-ARSB and TY-ARCB
(that contribute only 0.21% and 0.15% of the total number
of PanPatterns, respectively), the proportions of the remain-
ing PanPatterns range from 1.32% to 5.77%.

3.3.2 New bug-fixing edit patterns

Using GumtreeSpoon we identify 17 types of new bug-fixing
edit patterns in 11 categories presented in Table 3. Here,
we indicate those bug-fixing edit patterns as new, which
are not defined in PanPatterns. Although some of those
17 bug-fixing edit patterns are already identified in different
studies [46, 47, 63], we discover four completely new /novel
bug-fixing edit patterns, which were never reported before in
literature. These four novel bug-fixing edit patterns are CT-
AD, CT-Param, CA-AD, and EN-AD, as marked in Table 3
with bold font and asterisks.

In the following, we briefly describe the new patterns, some
of which are relatively complex, while the rest others can be
interpreted from their names.

Addition or deletion of node N1 (N1-AD). This type of pat-
tern consists of addition or deletion of a node N7 where N1 €
{constructor, throw, loop, enum, return, local variable,
assignment}. For example, in Figure 5, we see a construc-
tor is inserted in a class to fix a bug. Again, in Figure 6, a
throw statement is deleted to fix another bug.

For each of the seven nodes, we define seven patterns such
as (i) addition or deletion of constructor (CT-AD), (ii)
addition or deletion of throw (TW-AD), (iii) addition or

23

Table 2: Distributions of identified PanPatterns

Cat. Cat.
Category (Cat.) Pattern Name # % Total %
Method Change of method declaration (MD-CHG) 4,116 | 17.54%
Declaration Addition of a method declaration (MD-ADD) 1,916 | 817% | 7,687 | 33.00%
(MD) Removal of a method declaration (MD-RMV) 1,655 | 7.05%
Addition of post-condition check (IF-APTC) 1,975 | 8.42%
Removal of an if predicate (IF-RMYV) 1,588 1 6.77%
If-related Change of if condition expression (IF-CC) 761 | 3.24%
(IF) Addition of precondition check (IF-APC) 309 | 1.32% | 4,877 | 20.78%
Addition of precondition check with jump (IF-APCJ) 37 | 0.16%
Removal of an else branch (IF-RBR) 71| 0.30%
Addition of an else branch (IF-ABR) 136 | 0.58%
Method call with different number of parameters or 9.402 | 10.24%

Method Call different types of parameters (MC-DNP) ’ R 4639 | 20.00%
(MC) Change of method call to a class instance (MC-DM) 1,582 | 6.74% ’ Bt
Method call with different actual parameter values (MC-DAP) 655 | 2.79%

Class Field Addition of a class field (CF-ADD) 1,355 | 5.77%
(CF) Change of class field declaration (CF-CHG) 1,719 | 7.33% | 3,735 | 16.00%
Removal of a class field (CF-RMV) 661 | 2.82%
| Assignment (AS) [Change of assignment block expression (AS-CE) | 1,401 [0.97% | 1,401 | 5.97% |
| Loop (LP) | Change of loop predicate (LP-CC) | 549] 234% | 549 [2.34% |
Addition/removal of try statement (TY-ARTC) 491 | 2.09%
Try (TY) Addition/removal of a catch block (TY-ARCB) 35 | 0.15% 526 2.24%
[Switch (SW) | Addition/removal of switch block branch (SW-ARSB) 50 | 0.21% 50 0.21%
Overall total | 23,464 100%
Table 3: Distributions of newly identified edit patterns
Cat. Cat.
Category Pattern Name # % Total %
Local Variable Update implementation of local variable (LV-IMPL) 4,043 | 15.41% 7709 | 29.38%
(LV) Addition or deletion of local variable (LV-AD) 3,666 | 13.97% ’ s
Method Call Class/target change of method call (MC-TC) 2,881 | 10.98%
(MC) Addition of new method call (MC-A) 2,754 [10.50% | 7,531 | 28.70%
Deletion of new method call (MC-D) 1,896 | 7.23%
Update implementation of return statement (RT-IMPL) 3,361 | 12.81%
Return (RT) Addition or deletion of return statement (RT-AD) 839 | 3.20% 4,200 | 16.01%
| Assignment (AS) [Addition or deletion of assignment block statement (AS-AD) [3,390 | 12.92% | 3,390 | 12.92% |
Addition or deletion of constructor (CT-AD) 578 | 2.20%
Constructor (CT) *Parameter update in constructor (CT-Param)* 435 | 1.66% 1,013 3.86%
Update of implementation of throw statement (TW-IMPL) 651 | 2.42%
Throw (TW) Addition or deletion of throw statement (TW-AD) 210 [0.80% 861 3.28%
Class or Interface | Addition or deletion of class or interface (CI-AD) 480 | 1.83% 480 1.83%
(cn)
Wrap/Unwrap Wrap/unwrap code with/from high-level Node (WU-Code) 410 | 1.54% 410 1.54%
Code (WU-Code)
| Loop (LP) | Addition and/or deletion of loop statement (LP-AD) | 405] 154% | 405 1.54% |
| Catch (CA) | *Addition or deletion of catch variable (CA-AD)* | 130] 050% | 130] 0.50% |
| Enum (EN) | *Addition or deletion of enum statement (EN-AD)* 112 | 0.43% 112 0.43%
*Entirely new/novel bug-fixing edit patterns, which were never reported before. Overall total 26,241 100%
APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4 24

public class Math{ public class Math{

— public Math({ ... }
}
}

Figure 5: Insertion of a constructor to fix a bug

int index=checklIndex();
if(index<=0){
throw new NullPointerException();

} }

int index=checklIndex();
~ if(index<=0){
return null;

Figure 6: Deletion of a throw statement to fix a bug

deletion of loop (LP-AD), (iv) addition or deletion of enum
(EN-AD), (v) addition or deletion of return (RT-AD), (vi)
addition or deletion of local variable (LV-AD) and (vii)
addition or deletion of assignment (AS-AD).

Update implementation of node Ny (N2-IM PL). In this type
of pattern, the implementation of a node N2 is updated by
performing actions on other nodes associated with the im-
plementing node. For example, in Figure 7, we see the im-
plementation of a node throw is changed by updating an
associated node NullPointerException() to IndexQutOf-
BoundsException() to fix a bug. Here N2 € {throw, re-
turn, local variable}. Again, for each of the three nodes,
we define three patterns, such as (i) update implementa-
tion of throw (TW-IMPL), (ii) update implementation of
return (RT-IMPL), and (iii) update implementation of a
local variable (LV-IMPL).

Class/target change of method call (MC-TC). This pattern
contains those types of bug-fixing changes where the class
or target of a method call is changed to fix a bug. As shown
in Figure 8, the owner-class of a method getSum is changed
to fix a bug.

Parameter update in Constructor (CT-Param). Similar to
pattern MD-CHG, parameters of a constructor are often be
altered to fix bugs and such changes belong to this pattern.

Wrap /unwrap code with/from high-level Node (WU-Code).
This pattern of code changes consists of wrapping or un-
wrapping existing code with/from high-level nodes. The set
of high-level nodes h includes {if, for, foreach, while, do-
while, synchronized, try-catch} that can contain other
types of nodes. As shown in Figure 9 a piece of existing
code is wrapped up inside a for loop to fix a bug.

Method call addition (MC-A) or deletion (MC-D). Although
PanPatterns consider an addition or a deletion of a method
in a sequence pattern, it is not always the case that such an
addition or a deletion will be always a part of a sequence.
Hence, we consider these as new patterns, which include a
method’s addition or deletion in a sequence.

3.3.3 Comparative frequencies of the new patterns

As shown in Table 3, the category LV consists of the high-
est number of bug-fixing changes (29.38%) followed by the

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

categories MC (28.70%), RT (16.01%), and AS (12.92%).
Again, these four categories consist of almost 90% of newly
identified bug-fixing changes.

The pattern LV-IMPL experiences the highest number of
bug-fixing changes (15.41%) followed by the pattern LV-AD
(13.97%). The patterns AS-AD and RT-IMPL experience
almost an equal amount of bug-fixing changes (~13%). The
next three patterns MC-TC, MC-A, and MC-D are from
MC categories experience 10.98%, 10.50%, and 7.23% bug-
fixing changes, respectively. Those seven patterns together
contribute almost 84% of bug-fixing changes. The patterns
EN-AD, CA-AD, and TW-AD represent the three lowest
bug-fixing changes (below 1.00%). The amounts of the rest
of the patterns range from 1.50% to 3.20%.

4. DOMINANT NESTING PATTERNS

In Figure 10, we depict the steps required to detect nest-
ing patterns by capturing the NCSes that frequently host
the bug-fixing edits. The steps are briefly described in the
following subsections.

4.1 Mining Patterns of Nested Structures

In Section 2.3, we see that an NCS or parents’ tree structure
hosting a bug-fixing edit can be presented as a sequence of
parent nodes. Thus, to identify nesting patterns (i.e., domi-
nant NCSes), we use a sequential pattern mining technique.
Sequential pattern mining identifies a set of subsequences
or patterns that occur in some percentage or, with mini-
mum support of the input sequences. Any patterns that are
found to have support values above or equal to the value of
minimum support are said to be dominant patterns. Here,
using a sequential pattern mining algorithm, we identify the
nesting patterns that are dominant.

However, since a frequent long sequence contains a combi-
natorial number of frequent subsequences, such mining will
generate an exhaustive set of patterns, which will be highly
expensive in terms of time and space. To reduce the num-
ber of smaller sub-patterns that are found by the sequential
pattern mining algorithm, we require that a mining algo-
rithm produces closed or mazimal patterns [21, 68], where
sub-patterns that are contained within longer patterns are
ignored.

Closed sequential pattern mining algorithms ignore all such
sub-patterns that exist within other identified longer pat-
terns and occur at the same support level [68]. On the
other hand, maximal pattern mining algorithms ignore sub-
patterns no matter what are their support levels [21]. As we
aim to identify nesting patterns of bug-fixing changes, we
find the maximal pattern mining is preferable in our case.
In addition, we will apply a gap constraint to allow the max-
imum amount of gap between two nodes in the dataset of
sequences to be mined.

While there are few commonly used sequential pattern min-
ing algorithms available [20], we use the recently proposed
MG-FSM algorithm [49] that meets our requirement to specify
constraints such as pattern type (e.g., closed or maximal)
and gap constraint between two successive nodes. More-
over, the algorithm is capable of parallel running using map-

25

int index=checkIndex();
if(index <= 0){

throw new NullPointerException();
}

int index=checkIndex();
ifindex <= 0){

throw new IndexOutOfBoundsException();

Figure 7: Altering a throw statement to throw a different exception

intx=10,y =15, sum=0;
sum=Calculator.getSum (x, y)

intx=10,y =15, sum =0;
sum=MathCalculator.getSum (x,y)

Figure 8: Changing class/target of a method call to fix a bug

reduce (Hadoop) functionality and it is suitable in using on
a cloud infrastructure having the capacity to deliver the de-
sired scalability for larger datasets [49].

We run the tool by allowing no gap between two succes-
sive nodes to determine maximal patterns that have at least
1,000 occurrences. The tool delivers a total of 534 sequences
that are dominant. We exclude those patterns that do not
have at least one block node to make sure containment of
a node inside another node. Finally, we have 385 nesting
patterns that we use for clustering as follows.

4.2 Clustering of Nesting Patterns

At this step, we cluster similar types of nesting patterns in
groups. Such clustering provides a convenient way to ex-
amine the identified nesting patterns where developers com-
monly perform bug-fixing changes.

4.2.1 Selection of the clustering algorithm

To cluster nesting patterns, we use the k-medoids [36] algo-
rithm that is a variant of the k-means [35] algorithm. While
both the k-means and k-medoids algorithms break a dataset
up into groups, the latter algorithm uses existing points in
the dataset as cluster centroids. Moreover, k-medoids is
known for more robustness against noises and outliers com-
pared to k-means [36]. In addition, in our dataset k-means
cannot be used directly because numerical operations, such
as addition and division, cannot be performed on two pat-
terns, which consist of strings [49].

4.2.2 Determining the optimal number of clusters

To determine the optimal number of clusters (i.e., k in k-
medoids), we choose to use the gap statistic [66] method over
other available options such as elbow and silhouette meth-
ods. The reason why we choose this method as it can be
applied to any clustering method (i.e., k-medoids, k-means
clustering, and hierarchical clustering). Using the gap statis-
tic, we find the number of optimal clusters is 10 for our data.

The gap statistic compares the total intra-cluster variation
for different values of k with their expected values under null
reference distribution of the data (i.e. a distribution with no
obvious clustering). The reference dataset is generated us-
ing Monte Carlo [48] simulations of the sampling process.
The details of the gap statistic method can be found else-
where [66].

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

4.2.3 Defining a distance function for k-medoids

We use the Longest Common Subsequence (LCS) based string
metric to measure the distance between a pair of mined nest-
ing patterns. We define the distance function for any two
mined nesting patterns S; and S» as follows.

| LCS(Sh, S2) |

D S1,9)=1— ———1—"2
(RSN

Here, S1 and S> are two finite sequences of distinct nodes,

| LCS(S1,S2) | is the length of the longest common subse-

quence(s) of S1 and Sz, and maxz(| S1 |,| Sz |) is the length

of the longest sequence of S1 and Ss.

A value of 0.0 for the distance function Drcs(S1,S2) indi-
cates that two patterns are identical, while a value of 1.0
indicates that the patterns are completely different.

We measure the LCS metric by using the Python package
python-string-similarity [10] that implements the said
metric. Then, to cluster nesting patterns, we run the open-
source implementation of the k-medoids algorithm provided
in Python clustering package Pycluster 1.49 [9].

At this point, we have 10 clusters of nesting patterns. As
the mechanism to generate cluster is based on the names of
the AST nodes (i.e., text-based clustering), the clusters are
required to be interpreted/characterized by human experts
to gain meaningful insights of the structures of the nesting
patterns in the clusters.

4.3 Characterization of the Clusters

The first two authors are presented with a listing of all the
patterns in each cluster and asked to characterize those pat-
terns in terms of their nodes’ hierarchies. By observing
nodes’ hierarchies of the patterns, they create two sets of
nodes: (i) a set of low-level nodes [, where le {return, ex-
pression, throw, variable declaration, assignment} and
(ii) another set of high-level nodes h defined in Section 3.3.2.

Each author aims to identify if a low-level node’s block
from [is contained in a high-level node block from h. Such
identification is represented as a pattern/cluster ! block—h
block. For example, if a block of return is located inside
an if block, then the authors label that hierarchy as re-
turn block—if block. If a higher-level node block h; is
contained in another high-level node block hsz, then that
pattern is categorized as ‘Compound’ and represented as hi
block—hs block. In a similar fashion, deeper-levels’ con-
tainments/hierarchies can also be presented (see the third
column of the last row in Table 4).

Cohen’s kappa coefficient « [15] is used to measure agree-
ment between two authors in characterizing patterns. &
value 0.79 indicates high-level agreement on the characteri-
zation of the patterns of the clusters. For each disagreement,

26

if(tokenInFilePath[i].contains("Revisions"))

{

projectName=tokenInFilePath[i+1]; . {

return obj.method(p1, p2);

}

}

}

for(int i=0;i<tokenInFilePath.length;i++)
if(tokenInFilePathli].contains("Revisions"))

projectName=tokenlInFilePath[i+1];
return obj.method(p1, p2);

Figure 9: Wrapping up existing code using a for loop to fix a bug

Table 4: Dominant Nesting Patterns that frequently host bug-fixing edits

Cluster/

Category Pattern | Mined Nesting Patterns # % Sat. Cat.
otal %
(Cat.) ID
01 if block—if block 27,306 | 10.93%
02 Method invocation block—if block 19,430 7.78%
03 expression block—if block 16,838 6.74%
IForelated 04 assignment block—if block 10,250 | 4.10%
(IF) 05 variable declaration block—if block 9,996 4.00% | 101,691 | 40.72%
06 throw block—if block 9,274 | 3.71%
07 return block—if block 4,923 1.97%
08 Method invocation block as expression —if block 3,771 1.51%
09 Nested If (with/without else) 2,634 | 1.05%
10 block—try block 12,321 | 4.93%
11 variable declaration block—catch block 5,858 2.34%
Try-Catch 12 Method invocation block—try block 3,197 1.28% 24.709 9.89%
(TY-CA) 13 throw block—try-catch block 1,248 | 0.49% ’ R
14 expression block —try block 1,048 | 0.41%
15 try block—try block 1,037 | 0.41%
16 variable declaration block—loop block 10,202 | 4.08%
Loop (LP) 17 Method invocation block—loop block 6,001 2.40%
18 expression block—loop block 2,316 0.92% 20,029 8.02%
19 assignment block—1loop block 1,510 0.60%
Chained Method 20 | Chained method invocations 14,828 | 5.93% | 14,828 | 5.93%
Invocations (CMI)
Synchronize 21 if block—synchronized block 4,888 1.95% 8986 | 3.60%
(SYN) 22 loop block—synchronized block 4,098 | 1.64% ’ e
23 if block—1loop block 27,583 | 11.04%
24 if block—try block 13,328 5.33%
25 loop block—if block 6,457 | 2.58%
26 loop block—try block 4818 | 1.92%
27 try block—if block 3,725 | 1.49%
28 expression block—1loop block—if block 3,687 1.47%
29 loop block—1loop block 3,386 | 1.35%
Compound 30 try block—loop block 2,205 | 0.88%
(COM) 31 if block—loop block—if block 2,141 | 0.85% 79,484 | 31.82%
32 switch block—if block 1,413 | 0.56%
33 if block—loop block—try block 1,189 [0.47T%
34 if block—switch block 1,161 | 0.46%
35 switch block—loop block 1,145 | 0.45%
36 variable declaration block—if block—1loop block] 1,118 | 0.44%
37 expression block—loop block—try block 1,026 | 0.41%
Overall Total 249,727 100%
APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4 27

—
*AST _
differences Identify Detect
between Nesting Nesting Clusters
Versions Patterns Patterns of Nesting

Patterns

1
Clusters of : l Meaningful
Analysis
Nesting ——> Clusters of
Patterns by Experts Nesting patterns

Figure 10: Steps to identify nesting patterns that frequently host bug-fixing edits

authors discuss between them, and if necessary, they verify
raw data to come to an agreement. Such discussions result
in an unconventional pattern that has chained method in-
vocations (e.g., m1().m2().m3()) in a single block (see the
fourth category in Table 4).

Finally, total of 37 meaningful clusters is identified in six
categories: (i) IF-related (IF), (ii) Try-Catch (TY-CA) (iii)
Loop (LP) (iv) Chained Method Invocation (CMI) (v) Syn-
chronize (SYN) and (vi) Compound (COM) as presented
in Table 4. As per the definition of the category COM,
the category SYN falls in the COM category, although the
authors decide to create a separate category for it. As all
the patterns are found to have ended with a common suffix,
Method_declaration—Type_declaration—Compilation_-
unit, we truncate that for cleaner presentation.

4.4 Mining Results

There are nine types of nesting patterns or clusters belong to
the IF category that represents the largest amount (40.72%)
of the total number of patterns followed by the COM cat-
egory. The COM category consists of 15 types of patterns
contribute to 31.82% of the total number of patterns. The
categories TY-CA and LP contribute 9.89% and 8.02% of to-
tal patterns, respectively, followed by the CMI category that
consists of 5.93% of total patterns. The number of patterns
belongs to the SYN category is the lowest (3.60%).

By inspecting individual clusters, we find some interesting
patterns that can not be identified without considering hi-
erarchies of NCSes. The 23rd cluster (i.e., if block—1loop
block) is the most bug-prone pattern as it experiences the
highest number (27,583) bug-fix changes followed by the first
cluster if block—if block, which is slightly lower than the
former cluster. Noticeable, the number of bug-fix changes
in a pattern [block—if block is always higher than a pat-
tern | block—h’ block, where h’ = h—if. For example, the
number of occurrences of the pattern expression block—if
block is higher than the number of occurrences of the pattern
expression block—1loop block. Recalling that [represents
the set of low-level nodes.

It is very interesting that throw blocks inside if blocks are
more bug-prone than throw blocks inside try-catch blocks.
Although in Table 2 we see the number of changes in the cat-
egory Try (TY) is very low, the opposite result is observed in
Table 4, where category related to Try (TY-CA) experiences

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

the second highest bug-fix changes among the categories of
simple high-level nodes. It means that pieces of code inside
try-catch frequently experience bug-fix changes. A similar
observation is also applicable to the SYN category.

Surprisingly, only five clusters among 37 clusters contain
three-level containment (see clusters 28, 31, 33, 36, and 37),
which consist of only 3.64% of all patterns. The pattern
expression block—loop block—if block consists of almost
50% of all those three-levels patterns. No pattern is found
that contains more than three-levels of containment.

S. THREATS TO VALIDITY

This section discusses the possible limitations of this work,
the threats to the validity of the findings, and our efforts to
minimize those threats and shortcomings.

5.1 Construct Validity

For the first three projects, we use the bug-fixing commits
that are identified by Ray et al. [59]. To collect those buggy
commits, they used a technique similar to the approach of
Mockus and Votta [50]. A similar approach is also used
for detecting bug-fixing commits of the last two projects.
There is a possibility that some portions of the bug-fixing
commits may be general commits (e.g., new feature, and
improvement), thus, our data may contain some false pos-
itives. Having said that, Ray et al. found 96% accuracy
of their approach to collect those bug-fixing commits that
minimized the threat substantially.

To detect bug-fixing edit patterns, we have considered only
nodes found before the occurrence of the first block node
(if available) in an NCS. Someone may be skeptical of the
capabilities of detecting bug-fixing edit patterns using such
an approach. However, our approach is found successful in
detecting not only existing bug-fixing edit patterns but also
new bug-fixing edit patterns from code bases.

To detect nesting patterns, we have identified maximal pat-
terns instead of closed patterns of nested code structures.
Closed sequential pattern mining algorithms remove all pat-
terns that exist within other identified patterns and occur
at the same support level, while maximal pattern mining
removes sub-patterns regardless of the support level. For
our problem, the maximal pattern mining is preferable, as
we have aimed to identify deeper nested code structures in-
stead of sub-structures (i.e., sub-patterns).

28

To detect maximal patterns, we have allowed no gap between
two nodes and only considered those as patterns, which have
at least 1,000 occurrences. To detect exact nested code
structures, it is obvious that setting “no gap between two
nodes” is the best choice. Although the setting of 1,000 as
the threshold can be criticized, we have found the setting
was capable of retaining over 70% bug-fixing transactions,
while minimized human efforts in detecting meaningful clus-
ters.

In detecting patterns, we have excluded any mov actions
on nodes found in ASTs for bug-fixing changes. Typically,
an insertion or a deletion of a node caused moving of other
nodes in an AST where moved nodes remain unchanged.
Thus, such unchanged nodes (i.e., mov actions) can be ig-
nored, although it is still a threat in detecting patterns re-
lated to mov action.

5.2 Internal Validity

The correctness of our analysis depends on both GumTree
and GumtreeSpoon tools, which are used to answer RQ2 and
RQ1, respectively. The former tool outperforms the state-
of-the-art tool ChangeDistiller by maximizing the number
of AST node mappings, minimizing the edit script size, and
detecting better move actions [17]. Moreover, ChangeDis-
tiller works at the statement level, preventing the detec-
tion of certain fine-grain patterns.

Similar to GumtreeSpoon, there is another tool CLDIFF [26]
also available. Between CLDIFF and GumtreeSpoon, we se-
lected the latter tool for addressing RQ1, because, from a
sample test run, we revealed that CLDIFF failed in distin-
guishing changes to method parameters at its concise level
outputs. But, for this work on bug-fixing edit patterns, this
capability is very important for capturing subtle changes in
a code made for bug-fixing [57].

The library JGit [5] is used in our work to extract a buggy
and its previous revisions. The library is applied for a sim-
ilar purpose in other studies [23, 55|, which has brought
confidence in us to use that.

5.3 External Validity

Although our study includes a large number of revisions of
five subject systems, all the systems are open-source and
written in Java. Thus, the findings from this work may not
generalize for industrial systems and source code written in
languages other than Java.

5.4 Reliability

The methodology of this study including the procedures for
data collection and analysis are documented in this paper.
The subject systems being open-source, are freely accessible
while the tools GumTree, GumtreeSpoon, MG-FSM, and library
JGit are also available online. Moreover, the bug-fixing com-
mits are also publicly available. Therefore, it should be pos-
sible to replicate the study.

6. RELATED WORK

In discussing the related work, we organize previous research
relevant to ours in two categories. First, we discuss those

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

studies that were specific to detecting bug-fix patterns (Sec-
tion 6.1). Second, we discuss the work carried out to identify
code change patterns in general, not necessarily focusing on
capturing particularly the bug-fixing changes (Section 6.2).

6.1 Identifying Bug-Fixing Edit Patterns

Pan et al. [57] manually identified a set of 27 bug-fixing
edit patterns (i.e., PanPatterns) by exploiting textual dif-
ferences between buggy and non-buggy programs. A simi-
lar approach was also applied by Yue et al. [69] to identify
11 bug-fixing edit patterns, however, they used a clustering
technique to minimize manual efforts. Both studies are sub-
ject to few limitations: (i) obviously identifying all possible
bug-fixing edit patterns using manual effort is a daunting
task, which arises the possibility of failure in discovering all
types of bug-fixing edit patterns, and (ii) they used textual
differences between buggy and non-buggy programs to iden-
tify bug-fixing edit patterns, which is reported to be limited
in detecting bug-fixing edit patterns [17].

Despite few limitations, the study of Pan et al. is the most
influential work (in terms of citation numbers) in the related
area and till now they have identified the highest number
of bug-fixing edit patterns in code bases. That is why we
started our work by targeting this study to identify bug-
fixing edit patterns (while at the same time we kept an eye
on any new or unseen patterns). Instead of textual differ-
ence, we have used a state-of-the-art AST based code differ-
encing tool GumtreeSpoon and developed a fully automated
approach to detect bug-fixing edit patterns. Moreover, we
have detected 37 bug-fixing edit patterns, which is the high-
est among all the studies [38, 47, 46, 57, 63] carried out
to identify bug-fixing edit patterns to date. In addition, we
have identified four new patterns in Constructor, Catch, and
Enum categories (see Table 3).

Kim et al. [38] also employed manual efforts to identify a
set of 10 dominant bug-fixing edit patterns (known as PAR
templates). However, to collect bug-fixing patches they used
the Kenyon framework [12] and clustered those patches using
groums [54] to minimize human efforts. Again, Sobreira et
al. [63] manually analyzed only 395 patches collected from
Defects4J [37] project and identified 25 bug-fixing edit pat-
terns. Although the latter study identified the second high-
est number bug-fixing edit patterns after PanPatterns and
identified a few new patterns too, the work was conducted
on a very small dataset.

Thus, additional studies are required to verify their newly
identified bug-fixing edit patterns related to return, throw
and wrap/unwarp-code using larger datasets and our work
can be considered such a work that verifies those new pat-
terns are dominant in bug-fixing changes. Moreover, they
identified 33 instances of a pattern where throw blocks re-
side in if blocks. The sixth cluster in Table 4 confirms such
finding of their study. In addition, in a very recent study,
Tufano et al. [67] manually identified new patterns of only
five instances related to synchronized blocks’ additions and
deletions. The question is "can we consider those as patterns
with only five instances?”. Our study answers this question
in the positive from the observation of the 21st and 22nd
clusters in the SYN category presented in Table 4.

29

To overcome the problems of manual approaches, automatic
techniques are developed based on AST code differencing
tools to identify bug-fixing edit patterns. Martinez and
Monperrus [47] identified 20 bug-fixing edit patterns using
the AST based code differencing tool ChangeDistiller [19].
In our study, we have used the tool GumtreeSpoon [4] devel-
oped based on GumTree [17], which is more accurate than
ChangeDistiller.

Soto et al. [64] conducted a study of bug-fixing commits in
Java projects. Campos et al. [14] characterized the preva-
lence of the five most common bug-fixing edit patterns re-
lated to IF category. However, the studies of Soto et al.
and Campos et al. limited the searching of bug-fixing edit
patterns within PAR templates and patterns identified by
Pan et al., respectively. In our case, we have remained open
to identify any bug-fixing edit patterns exist in code bases.
Osman et al. [55] applied a semi-automated approach to
identify five bug-fixing edit patterns. In contrast to their ap-
proach, we have used a fully automated technique to identify
37 bug-fixing edit patterns.

Hanam et al. [24] developed the BugAID technique for dis-
covering bug-fixing edit patterns in JavaScript. Sudhakr-
ishnan [65] identified 25 bug-fixing edit patterns in Verilog
(a hardware description language). Long and Rinard [44]
learned a probabilistic model of correct patch from bug-
fixing changes of C code. In contrast to their studies, we
have studied five Java projects. While all the previously
mentioned studies identified bug-fixing edit patterns, none
of the studies conducted any nested code structures analysis
to detect nesting patterns, which is a nowvel contribution of
our study.

Few other studies [43, 56, 60] identified fixing patterns of
violations of static good coding principles identified by tools
such as PMD [7], FindBugs [16] and Splint [11]. However, in
our study, we have studied real bug-fixing changes instead
of coding principles’ violations.

6.2 Identifying Code-Change Patterns

In the past, studies were conducted to understand the of
characteristics and patterns of buggy code with respect to
different criteria such as code quality, security vulnerabili-
ties, stability [30, 31, 32, 34, 61, 70, 71]. There have also
been many studies to identify patterns of code changes in
general, which are not specific to bug-fixing edits. Here we
discuss only those, which are the most relevant to our work.

Fluri et al. [18] identified code-change patterns in three Java
applications using ChangeDistiller. Again, Martinez et
al. [46] used ChangeDistiller to identify 18 code-change
patterns. Molderez et al. [51] developed an automated sys-
tem to mine code-change histories to detect unknown repet-
itive code-changes. Kim et al. [39, 41] discovered logical and
structural changes at or above the method level. Breu and
Zimmermann [13] extracted method call change patterns.
Negara et al. [53] developed the tool CodingTracker and dis-
covered previously unknown 10 code-change patterns. Kim
et al. [40] developed the tool LSdiff that can group code-
changes from systematic change patterns. While all these
studies analyzed code-change patterns, we have studied bug-
fixing changes by mining software repositories.

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

7. CONCLUSION

Fixing bugs in software systems involves two fundamental
tasks: first, identification of the location of the bug (i.e.,
bug localization), and second, making edits to the existing
code to fix the bug (i.e., refactoring). Towards better assis-
tance and a deeper understanding of these two tasks, this
paper identifies bug-fixing nesting patterns and edit patterns
by conducting a combination of quantitative and qualitative
analyses of 4,653 buggy revisions of five open-source software
systems written in Java.

Our analyses have reported 38 bug-fixing edit patterns or-
ganized in 14 categories. This is the highest number of bug-
fixing edit patterns identified in a single study. 34 of the
38 bug-fixing edit patterns, confirm those reported earlier
in the literature. Four of the identified bug-fixing edit pat-
terns are completely new (i.e., were never reported before).
These four new edit patterns are related to the constructor,
try-catch, and enum code constructs.

Among the 14 identified categories of bug-fixing edit pat-
terns, Method Call (MC), Method Declaration (MD), Local
Variable (LV), If-related (IF), Assignment (AS), and Return
(RT) are the six most dominant categories that frequently
host bug-fixing edits. The four least dominant categories
are Try (TY), Switch (SW), Catch (CA), and Enum (EN).
These findings are in accordance with the observations re-
ported in other studies [57, 63, 47] in the past.

Using sequential pattern mining and clustering techniques,
we have discovered 37 new bug-fixing nesting patterns, which
capture the locations of the bug-fixing edits within the nested
code structure surrounding them. This new set of nesting
patterns is a nowvel contribution that adds a new dimension
to our understanding of bug-fixing patterns. The identified
nesting patterns are organized in six categories as listed in
descending order of their frequencies as follows: If-related
(IF), Compound (COM), Loop (LP), Try-catch (TY-CA),
Synchronize (SYN), and Chain Method Invocation (CMI).

Our analysis of the nesting patterns reveals additional in-
sights into the locations where big-fixing edits frequently
take place. We have found that any nodes/blocks associ-
ated with if blocks are the most bug-prone. The nesting
pattern “if block inside loop block” experiences the high-
est number bug-fixing edits, followed by the “if block inside
another if block” nesting pattern. Moreover, for the first
time, in this study, we have discovered that nesting pat-
terns in the CMI category experience a significant number
of bug-fixing edits. Our analysis of the nesting patterns also
indicates nodes/blocks inside try-catch and synchronized
constructs are bug-prone.

The findings from this work deepen our understanding of
bug-fix patterns. Both the bug-fixing edit patterns and nest-
ing patterns can also be useful in devising techniques for au-
tomated program repair. For example, existing probabilis-
tic patch generation algorithms can incorporate patterns of
bug-fix edits and their locations in nested code structures to
maximize the probabilities of locating bugs and generating
patches for those bugs successfully. Our future work will
explore these possibilities.

30

8.

ACKNOWLEDGEMENT

This work is supported in part by the SCoRe (Stimulating
Competitive Research) grant at the Department of Com-
puter Science, University of New Orleans, USA.

9.
1]

2]

REFERENCES

Apache Accumulo: a highly scalable open source data
store. https://accumulo.apache.org, verified: Nov
2020.

Commons Math: The Apache Commons Mathematics
Library.
https://commons.apache.org/proper/commons-math/,
verified: Nov 2020.

Facebook SDK for Android.
https://github.com/facebook/facebook-android-sdk,
verified: Nov 2020.

GumtreeSpoon - Spoon version of GumTree.
https://github.com/SpoonLabs/gumtree-spoon-ast-
diff, verified: Nov

2020.

JGit. https://www.eclipse.org/jgit/, verified: Nov
2020.

Netty: an asynchronous event-driven network
application framework. https://netty.io, verified: Nov
2020.

PMD - Source Code Analyzer.
http://pmd.sourceforge.net, verified: Nov 2020.

Presto: Distributed SQL Query Engine for Big Data.
https://prestodb.io, verified: Nov 2020.

PyCluster - Clustering module for Python.

(17]

(18]

(19]

[20]

(21]

(22]

23]

https://bioconda.github.io/recipes/pycluster/README.html,

verified: Nov 2020.

Python-String-Similarity.
https://github.com/luozhouyang/python-string-
similarity /blob/master/README.md, verified: Nov
2020.

SPLINT - Secure Programming LINT.
http://www.splint.org, verified: Nov 2020.

J. Bevan, E. Whitehead, S. Kim, and M. Godfrey.
Facilitating software evolution research with kenyon.
In Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
pages 177-186, 2005.

S. Breu and T. Zimmermann. Mining aspects from
version history. In Proceedings of the IEEE/ACM
International Conference on Automated Software
Engineering, pages 221-230, 2006.

E. Campos and M. Maia. Common bug-fix patterns:
A large-scale observational study. In Proceedings of the
Empirical Software Enginerign and Measurement,
pages 404-413, 2017.

A. Cantor. Sample-size calculations for cohen’s kapp.
Psychological Methods, 1(2):150-153, 1996.

B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus,
W. Pugh, and K. Stephens. Improving your software

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

(24]

25]

(26]

27]

using static analysis to find bugs. In OOPSLA, pages
673-674, 2006.

J. Falleri, F. Morandat, X. Blanc, M. Martinez, and
M. Monperrus. Fine-grained and accurate source code
differencing. In Proceedings of the IEEE/ACM
International Conference on Automated Software
Engineering, pages 313-324, 2014.

B. Fluri, E. Giger, and H. Gall. Discovering patterns
of change types. In Proceedings of the IEEE/ACM
International Conference on Automated Software
Engineering, pages 15-19, 2008.

B. Fluri, M. Wursch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source
code change extraction. IEEE Transactions on
Software Engineering, 33(11):725-743, 2007.

P. Fournier-Viger, J. Lin, A. Gomariz, T. Gueniche,
A. Soltani, and Z. Deng. The SPMF open-source data
mining library version 2. In Proceedings of the Joint
European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 36-40, 2016.

P. Fournier-Viger, C. Wu, A. Gomariz, and V. Tseng.
VMSP: Efficient vertical mining of maximal sequential
patterns. Advances in Artificial Intelligence,
8436:83-94, 2014.

Tricentis GmbH. Software Fail Watch: 5th Edition.
https://www.tricentis.com/resources/software-fail-
watch-5th-edition/, verified: Nov

2020.

G. Greene and B. Fischer. Cvexplorer: Identifying
candidate developers by mining and exploring their
open source contributions. In Proceedings of the
IEEE/ACM International Conference on Automated
Software Engineering, pages 804-809, 2016.

Q. Hanam, F. Brito, and A. Mesbah. Discovering bug
patterns in javascript. In Proceedings of the ACM
SIGSOFT International Symposium on Foundations
of Software Engineering, pages 144-156, 2016.

M. Hashimoto and A. Mori. Diff/TS: A tool for
fine-grained structural change analysis. In Proceedings
of the Working Conference on Reverse Engineering,
pages 279-288, 2008.

K. Huang, B. Chen, X. Peng, D. Zhou, Y. Wang,

Y. Liu, and W. Zhao. Cldiff: Generating concise
linked code differences. In Proceedings of the
IEEE/ACM International Conference on Automated
Software Engineering, pages 679-690, 2018.

Research T. Institute. The economic impacts of
inadequate infrastructure of software testing. RTI
Project Report 7007.011, National Inst. of Standards
and Tech., 2002.

J. Islam, M. Mondal, and C. Roy. Bug replication in
code clones: An empirical study. In Proceedings of the
International Conference on Software Analysis,
Evolution, and Reengineering, 2016.

J. Islam, M. Mondal, C. Roy, and K. Schneider. A
comparative study of software bugs in clone and
non-clone code. In Proceedings of the International

31

[30]

[31]

32]

[34]

[39]

[40]

[41]

[42]

[43]

Conference on Software Engineering and Knowledge
Engineering, pages 436-443, 2017.

M. Islam and M. Zibran. A comparative study on
vulnerabilities in categories of clones and non-cloned
code. In Proceedings of the 10th IEEE International
Workshop on Software Clones, pages 8-14, 2016.

M. Islam and M. Zibran. On the characteristics of
buggy code clones: A code quality perspective. In
Proceedings of the 12th IEEE International Workshop
on Software Clones, pages 23 — 29, 2018.

M. Islam and M. Zibran. Sentiment analysis of
software bug related commit messages. In Proceedings
of the 27th International Conference on Software
Engineering and Data Engineering, pages 3-8, 2018.

M. Islam and M. Zibran. How bugs are fixed:
Exposing bug-fix patterns with edits and nesting
levels. In Proceedings of the 35th ACM/SIGAPP
Symposium on Applied Computing, pages 1523-1531,
2020.

M. Islam, M. Zibran, and A. Nagpal. Security
vulnerabilities in categories of clones and non-cloned
code: An empirical study. In Proceedings of the 11th
ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 20-29,
2017.

A. jain. Data clustering: 50 years beyond k-means.
Pattern Recognition Letters, 31(8), 2010.

X. Jin and J. Han. K-Medoids Clustering.
Encyclopedia of Machine Learning (Springer), 2011.

R. Just, D. Jalali, and M. Ernst. Defects4j: A
database of existing faults to enable controlled testing
studies for java programs. In Proceedings of the
International Symposium on Software Testing and
Analysis, pages 437-440, 2014.

D. Kim, J. Nam, J. Song, and S. Kim. Automatic
patch generation learned from human-written patches.
In Proceedings of the International Conference of
Software Engineering, pages 802-811, 2013.

M. Kim, J. Beall, and D. Notkin. Discovering and
representing logical structure in code change.
Technical report, University of Washington, 2007.

M. Kim and D. Notkin. Discovering and representing
systematic code changes. In Proceedings of the
International Conference on Software Engineering,
pages 309-319, 2009.

M. Kim, D. Notkin, and D. Grossman. Automatic
inference of structural changes for matching across
program versions. In Proceedings of the International
Conference of Software Engineering, 2007.

S. Kim, K. Pan, and E. Whitehead. Memories of bug
fixes. In Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 35-45, 2006.

K. Liu, D. Kim, T. Bissyande, S. Yoo, and Y. Traon.
Mining fix patterns for findbugs violations. IEEE

Transactions on Software Engineering, pages 1-24,
2018.

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

[44]

[45]

[46]

[47]

[48]

(49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

F. Long and M. Rinard. Automatic patch generation
by learning correct code. In Proceedings of the Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 298-312, 2016.

J. Maletic and M. Collard. Supporting source code
difference analysis. In Proceedings of the IEEE
International Conference on Software Maintenance,
page PP, 2004.

M. Martinez, L. Duchien, and M. Monperrus.
Automatically extracting instances of code change
patterns with ast analysis. In Proceedings of the IEEE
International Conference on Software Maintenance,
pages 22 — 28, 2013.

M. Martinez and M. Monperrus. Mining software
repair models for reasoning on the search space of
automated program fixing. Empirical Software
Engineering, 20(1):176-205, 2015.

Monte Carlo method. Monte Carlo method.
https://en.wikipedia.org/wiki/Monte_Carlo_method,
verified: Nov 2020.

I. Miliaraki, K. Berberich, R. Gemulla, and

S. Zoupanos. Mind the gap: Large-scale frequent
sequence mining. In Proceedings of the International
Conference on Management of Data, pages 797-808,
2013.

A. Mockus and L. Votta. Identifying reasons for
software changes using historic databases. In
Proceedings of the International Conference on
Software Maintenance and Evolution, pages 120-130,
2000.

T. Molderez, R. Stevens, and C. Roover. Mining
change histories for unknown systematic edits. In
Proceedings of the International Conference on Mining
Software Repositories, pages 248-256, 2017.

M. Mondal, C. K. Roy, and K. A. Schneider.
Identifying code clones having high possibilities of
containing bugs. In Proceedings of the IEEE/ACM
International Conference on Program Comprehension,
pages 99-109, 2017.

S. Negara, M. Codoban, D. Dig, and R. Johnson.
Mining fine-grained code changes to detect unknown
change patterns. In Proceedings of the International
Conference on Software Engineering, pages 803-813,
2014.

T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and
T. Nguyen. Graph-based mining of multiple object
usage patterns. In Proceedings of the ACM SIGSOFT
Symposium on Foundations of Software Engineering,
pages 383-392, 2009.

H. Osman, M. Lungu, and O. Nierstrasz. Mining
frequent bug-fix code changes. In Proceedings of the
IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering, pages
343-347, 2014.

H. Oumarou, N. Anquetil, A. Etien, S. Ducasse, and
K. Taiwe. Identifying the exact fixing actions of static
rule violation. In Proceedings of the IEEE

32

[57]

[58]

[64]

International Conference on Software Analysis,
FEvolution and Reengineering, pages 371-379, 2015.

K. Pan, S. Kim, and E. Whitehead Jr. Toward an
understanding of bug fix patterns. Empirical Software
Engineering, 14(3):286-315, 2009.

F. Rahman, C. Bird, and P. Devanbu. Clones: what is
that smell? In Proceedings of the International
Conference of Mining Software Repositiries, pages
72-81, 2010.

B. Ray, V. Hellendoorn, S. Godhane, Z. Tu,

A. Bacchelli, and P. Devanbu. On the “naturalness” of
buggy code. In Proceedings of the International
Conference of Software Engineering, pages 428-439,
2016.

R. Rolim, G. Soares, R. Gheyl, T. Barik, and
L. D’Antoni. Learning quick fixes from code
repositories. In arXiv preprint arXiv:1803.03806, 2018.

R. Saha, M. Asaduzzaman, M. Zibran, C. Roy, and
K. Schneider. Evaluating code clone genealogies at

release level: An empirical study. In SCAM, pages

87-96, 2010.

R. Saha, Y. Lyu, H. Yoshida, and M. Prasad. Elixir:
Effective object-oriented program repair. In
Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, pages
648-659, 2017.

V. Sobreira, T. Durieux, F. Madeiral, M. Monperrus,
and M. Maia. Dissection of a bug dataset: Anatomy of
395 patches from Defects4J. In Proceedings of the
IEEE International Conference on Software Analysis,
FEvolution and Reengineering, 2018.

M. Soto, F. Thung, C. Wong, C. Goues, and D. Lo. A

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

(65]

[66]

[67]

(68]

(69]

[70]

[71]

deeper look into bug fixes: Patterns, replacements,
deletions, and additions. In Proceedings of the
International Conference of Mining Software
Repositiries, pages 512-515, 2016.

S. Sudhakrishnan, J. Madhavan, and E. Whitehead Jr.
Understanding bug fix patterns in verilog. In
Proceedings of the International Working Conference
on Mining Software Repositories, pages 39-42, 2015.

R. Tibshirani, G. Walther, and T. Hastie. Estimating
the number of clusters in a data set via the gap
statistic. Journal of the Royal Statistical Society,
63(2):411-423, 2001.

M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and
D. Poshyvanyk. On learning meaningful code changes
via neural machine translation. In Proceedings of the
International Conference of Software Engineering,
page (to appear), 2019.

J. Wang, J. Han, and C. Li. Frequent closed sequence
mining without candidate maintenance. IEEE Trans.
on Knowledge Data Engineering, 19(8):1-15, 2007.

R. Yue, N. Meng, and Q. Wang. A characterization
study of repeated bug fixes. In Proceedings of the
International Conference on Software Maintenance
and Evolution, pages 422432, 2017.

M. Zibran, R. Saha, C. Roy, and K. Schneider.
Evaluating the conventional wisdom in clone removal:
A genealogy-based empirical study. In Proceedings of
the 28th ACM/SIGAPP Symposium on Applied
Computing, pages 1123-1130, 2013.

M. Zibran, R. Saha, C. Roy, and K. Schneider.
Genealogical insights into the facts and fictions of
clone removal. ACM Applied Computing Review,
13(4):30-42, 2013.

33

ABOUT THE AUTHORS:

Dr. Md Rakibul Islam is an Assistant Professor at the Department of Computer
Science, University of Wisconsin - Eau Claire, USA. His research interests include
human aspects in software engineering, software security, source code analysis, &
natural language processing. To solve problems in his research areas, he developed
various useful tools and generated interesting insights by applying techniques, such
as machine learning, data mining, and graph theories. To disseminate his research
findings & outputs, he has published several scholarly articles in reputed journals &
conferences. He has also served as a reviewer & co-reviewer to reviewing
manuscripts submitted in different journals & conferences. Rakib also has almost
seven years of industrial experience.

Dr. Minhaz F. Zibran is an Associate Professor at the Department of Computer
Science, University of New Orleans, USA. His research fights software bugs and
security vulnerabilities using program code analysis and manipulation while also
taking into account the human factors that affect software quality. Minhaz has co-
authored many scholarly articles published in ACM and IEEE sponsored
international conferences and reputed journals. Minhaz also has experience of
working in software industry. He has been actively involved in organizing
international conferences (e.g., MSR, ICDF2C, IWSC, SEMotion, ICPC, ICSM,
SCAM) and in reviewing manuscripts submitted to reputed journals (e.g., IEEE
Software, IEEE Security & Privacy, TOSEM, EMSE, JSS, IST, SQJ).

APPLIED COMPUTING REVIEW DEC. 2020, VOL. 20, NO. 4

34

