
On the Effectiveness of Labeled Latent Dirichlet Allocation
in Automatic Bug-Report Categorization

Minhaz F. Zibran
University of New Orleans

2000 Lakeshore Drive, New Orleans, LA, USA
zibran@cs.uno.edu

ABSTRACT
Bug-reports are valuable sources of information. However,
study of the bug-reports’ content written in natural language
demands tedious human efforts for manual interpretation.
This difficulty limits the scale of empirical studies, which
rely on interpretation and categorization of bug-reports. In
this work, we investigate the effectiveness of Labeled Latent
Dirichlet Allocation (LLDA) in automatic classification of
bug-reports into a predefined set of categories.

CCS Concepts
•Software and its engineering → Software libraries and
repositories;

Keywords
bug-report; automatic categorization; topic modelling; LLDA

1. INTRODUCTION AND MOTIVATION
Bug-repositories play a vital role in managing software

defects over long term. Especially the long-lived software
projects benefit from maintaining an accompanying bug-
repository in activities such as bug triage, assignment of
bug-fixing tasks, and keeping track of a history of known
bugs. For purposes such as bug triage and bug-fixing task as-
signment, bug-reports in a bug-repository are typically kept
characterized in several ways in terms of severity, priority,
affected module, and open-close status of the bug-reports.

While these characterization of the bug-reports help in
regular bug triage, additional means of characterizations
are necessary for carrying out further analyses, given that
bug-repositories are valuable sources of information used in
software engineering research and development. For exam-
ple, Zibran et al [19] studied bug-posts to determine the
significances 22 factors, which affect the usability of pub-
lished APIs (Application Programming Interfaces). They
manually studied more than a thousand bug-posts, distin-
guished those bug-reports relevant to API usability issues,
and characterized each of them based on what usability is-
sues are reflected in the bug-posts. Due to unavailability

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 14-22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4205-6/16/05.

DOI: http://dx.doi.org/10.1145/2889160.2892646

of a reference-corpus, which could be used to train a NLP
(Natural Language Processing) technique and automate the
categorization process, they had to rely on their subjective
analyses.

Indeed, manual investigation of thousands of bug-posts is
a very tedious task. Devising a technique for automatic cate-
gorization of bug-reports (and documents written in natural
languages) can save a lot of efforts and also allow large scale
studies based on bug-report characterization. This work fol-
lows the study of Zibran et al [19]. In this paper, we present
our ongoing work towards automatic bug-report categoriza-
tion for large scale investigation of the significances of API
usability factors reported earlier [18, 19]. We apply Labeled
Latent Dirichlet Allocation (LLDA) [8], which is a proba-
bilistic topic modelling technique emerged from the field of
NLP. In particular, our work aims to make two contribu-
tions:
• We investigate the prospect and effectiveness of LLDA in

automatically classifying bug-reports into a fixed set of
predefined categories.
• We produce a curated data-set of bug-reports, which will

benefit the research community in NLP tool evaluation
and can be used as a training oracle in large scale studies,
which rely on categorization bug-reports.

2. APPROACH
The set of 22 categories of API usability factors reported

earlier [18, 19] is presented in Table 1. Further details about
these 22 categories can be found elsewhere [18, 19]. In this
work, we investigate the feasibility of LLDA in categoriz-
ing bug-reports into those closed set of 22 categories. Our
study includes 1,138 bug-reports for three different projects
namely Eclipse, GNOME, and Python 3.1 (Table 2).

Table 1: Set of 22 categories of interest
Complexity Concurrency
Naming Conceptual correctness
Caller’s perspective Leftovers for client
Documentation Multiple ways to do one thing
Consistency Parameter and return
Error handling Implementation vs. interface dependency
Reference chain Memory management
API aging Technical mismatch
API change Factory pattern vs. constructor
Data types Constructor parameter
Use of attributes Code intelligibility

2.1 Phase 1: Oracle Development
The unavailability of a reference-corpus is a severe diffi-

culty in applying LLDA for classifying bug-reports into those



Table 2: Bug-reports and selection criteria
Project Project Selection criteria # of posts
name component status Date until All U*

Eclipse
JDT Core All 12 Oct’08 406 50
JDT UI closed 22 Oct’08 260 37

G
N
O
M

E

Libxml++ All 09 Jan’09 12 09
glibmm All 09 Jan’09 28 24
gnomemm All 09 Jan’09 16 08
glade All 09 Jan’09 05 01
gnome-perl All 09 Jan’09 09 06
gnome-python All 09 Jan’09 10 08
gtkmm All 09 Jan’09 44 33
java-gnome All 09 Jan’09 18 06
libsigc++ All 09 Jan’09 19 12
pyorbit All 09 Jan’09 02 01
pygobject All 09 Jan’09 85 61
pygtk All 09 Jan’09 122 97

Python All closed issues 15 Jan’09 102 75
(*here, U = API usability related) Total 1,138 428

22 categories. Hence, we carefully go through each of these
bug-reports and distinguish 428 of them as relevant to API
usability. Then we further investigate each of these API-
related 428 bug-reports. A bug-report is labeled with one
or more of those 22 categories depending on whether the
respective usability issues are found in the content and dis-
cussion of the bug-post. Thus, we develop an oracle of 428
bug-reports with known categorization.

2.2 Phase-2: Applying NLP
For applying LLDA, we use the Stanford Topic Model-

ing Toolbox (TMT) version 0.3.3 [1], which is a framework
with core NLP algorithms including LLDA. We write Scala
scripts making calls to appropriate APIs as required. Given
a training-corpus of documents associated with multiple la-
bels, LLDA is reported to be able to categorize documents
by inferring the labels appropriate for each document in a
seperate inference-corpus [8]. Using the oracle developed in
phase-1, we measure accuracy of the categorization in terms
of the precision, recall, and, F-score.

2.2.1 Document Preparation and Cleanup
Before applying LLDA, each of the bug-reports is trans-

formed into a document containing only the title and con-
catenated comments from the bug-report. The documents
are further cleaned up with the help of TMT at the time of ap-
plying LLDA. The stop-words, numbers, punctuation char-
acters, and words having length of one or two characters are
filtered out.

2.2.2 Invoking LLDA
A proper application of LLDA involves two stages: learn-

ing and inference [8]. At the learning stage, LLDA is applied
on a training corpus (with documents having known labels)
to develop a model, which is then used at the inference stage
to infer labels of documents in inference-corpus.

We split the oracle of documents corresponding to the
428 bug-reports (distinguished in phase-1) into two disjoint
sets. The 266 documents corresponding to the GNOME bug-
reports constitute the larger corpus, and the remaining 162
documents corresponding to the Eclipse and Python 3.1

bug-reports make the smaller corpus.
First, we train LLDA on the smaller and invoke it for

inference on the larger corpus. Next, we use the larger cor-
pus for training, and smaller one for inference. Then, we
compare the results.

3. FINDINGS
Table 3 presents the accuracy of automated bug-report

categorization when LLDA is trained on the smaller corpus
and when the larger corpus is used for training. As we see,
in Table 3, the accuracy in terms of precision, recall, and F-
score substantially increased when the LLDA is trained on
the larger corpus. The magnitude of increase in accuracy
indicates that LLDA is potentially effective in automatic
bug-report categorization if a sufficiently large corpus is used
at the training stage.

Table 3: Accuracy of bug-report categorization
Training Accuracy of inference
corpus Precision Recall F-score
Smaller 0.140 0.294 0.178
Larger 0.344 0.449 0.356

4. THREATS TO VALIDITY
Our study may be subject to human errors in the inter-

pretation of the the bug-reports to produce the oracle. To
minimize this threat, randomly picked 120 of the bug-report
were verified for sanity check by two computer science prac-
titioners other than the author. Exhaustive manual cross-
check over all the bug-posts was not performed to minimize
cost (time and effort) and that the random sanity check in-
deed confirmed correctness.

5. RELATED WORK
A number of earlier work [3, 7] attempted automatic bi-

nary classification to distinguish enhancement/feature re-
quests from report addressing software defects. Bug-reports
are also studied for detection of duplicate bug-reports [10,
12, 13], to facilitate bug triage [15], for predicting sever-
ity [5, 6], priority [14] of bug-reports, and estimating the
time needed to fix a bug [2, 4, 16]. Attempts are also made
for automatic summarization [9] of bug-reports and to de-
velop hybrid techniques for bug-report classification [11, 17].

Although all of these work are more or less relevant to
our work, ours significantly differs from them in terms of the
objectives and approaches. For example, Somasundaram et
al. [11] applied unsupervised LDA for automatic categoriza-
tion of bug-reports, while we use supervised labeled LDA,
which is an improved variant of LDA, particularly suitable
in documents classification where a document can be clas-
sified to more than one categories in a closed set of cate-
gories [8], as such required for our work. Moreover, our work
deals with an additional difficulty of not having an existing
reference-corpus and we build one for our purpose.

6. CONCLUSION
In this work, we have investigated the prospect and effec-

tiveness of LLDA-based topic modelling in automatic bug-
report categorization. Based on a study on 1,138 bug-posts
from bug-repositories for three different software projects,
we derived that topic modelling can indeed be promising for
such purposes when trained on large training corpus.

We, therefore, will extend this work by enlarging the or-
acle, which can be reused as a curated reference-corpus for
tool evaluation and for conducting similar studies in larger
scale. We also plan to carry out large scale studies to verify
the results reported in earlier studies [18, 19], which relied
on bug-report interpretation and categorization.

Acknowledgement: Thanks to Farjana Z. Eishita and
Chanchal K. Roy for helping with random sanity check in
the development of the oracle.



7. REFERENCES
[1] Stanford topic modelling toolbox,

http://nlp.stanford.edu/software/tmt/tmt-0.3, last
access: Jan 2016.

[2] P. Anbalagan and M. Vouk. On predicting the time
taken to correct bug reports in open source projects.
In Proceedings of the International Conference on
Software Maintenance (ICSM), pages 523–526, 2009.

[3] G. Antoniol, K. Ayari, M. Penta, F. Khomh, and
Y. Guéhéneuc. Is it a bug or an enhancement? In
Proceedings of the Centre for Advanced Studies
Conference (CASCON), pages 304–318, 2008.

[4] E. Giger, M. Pinzger, and H. Gall. Predicting the fix
time of bugs. In Proceedings of the International
Workshop on Recommendation Systems for Software
Engineering (WRSSE), pages 52–56, 2010.

[5] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals.
Predicting the severity of a reported bug. In
Proceedings of the International Conference on Mining
Software Repositories (MSR), pages 1–10, 2010.

[6] T. Menzies and A. Marcus. Automated severity
assessment of software defect reports. In Proceedings
of the International Conference on Software
Maintenance (ICSM), pages 346–355, 2008.

[7] N. Pingclasai, H. Hata, and K. Matsumoto. Classifying
bug reports to bugs and other requests using topic
modeling. In Proceedings of the Asia-Pacific Software
Engineering Conference (APSEC), pages 13–18, 2013.

[8] D. Ramage, D. Hall, R. Nallapati, and C. Manning.
Labeled LDA: A supervised topic model for credit
attribution in multi-labeled corpora. In Proceedings of
the 2009 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 248–256, 2009.

[9] S. Rastkar, G. Murphy, and G. Murray. Summarizing
software artifacts: A case study of bug reports. In
Proceedings of the International Conference on
Software Engineering (ICSE), pages 505–514, 2010.

[10] P. Runeson, M. Alexandersson, and O. Nyholm.
Detection of duplicate defect reports using natural

language processing. In Proceedings of the
International Conference on Software Engineering,
pages 499–510, 2007.

[11] K. Somasundaram and G. Murphy. Automatic
categorization of bug reports using latent dirichlet
allocation. In Proceedings of the India Software
Engineering Conference (ISEC), pages 125–130, 2012.

[12] C. Sun, D. Lo amd S. Khoo, and J. Jiang. Towards
more accurate retrieval of duplicate bug reports. In
Proceedings of the International Conference on
Automated Software Engineering (ASE), pages
253–262, 2011.

[13] C. Sun, D. Lo, X. Wang, J. Jiang, and S. Khoo. A
discriminative model approach for accurate duplicate
bug report retrieval. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 45–54, 2010.

[14] Y. Tian, D. Lo, and C. Sun. Drone: Predicting
priority of reported bugs by multi-factor analysis. In
Proceedings of the International Conference on
Software Maintenance (ICSM), pages 200–209, 2013.

[15] D. Čubranić. Automatic bug triage using text
categorization. In Proceedings of the International
Conference on Software Engineering and Knowledge
Engineering (SEKE), pages 92–97, 2004.

[16] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller.
How long will it take to fix this bug? In Proceedings of
the International Conference on Mining Software
Repositories (MSR), page 1, 2007.

[17] Y. Zhou, Y. Tong, R. Gu, and H. Gall. Combining
text mining and data mining for bug report
classification. In Proceedings of the International
Conference on Software Maintenance and
Evolution(ICSME), pages 311–320, 2014.

[18] M. Zibran. What makes APIs difficult to use? J.
Comp. Sci. Netw. Sec., 8(4):255–261, 2008.

[19] M. Zibran, F. Eishita, and C. Roy. Useful, but usable?
factors affecting the usability of APIs. In Proceedings
of the International Working Conference on Reverse
Engineering (WCRE), pages 151–155, 2011.


