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ABSTRACT Cracks are known to induce levee failures leading to catastrophic flooding in low-lying regions 

around the levee. Detecting cracks in levee systems has not received considerable critical attention. Thus, this 

study presents a novel encoder-decoder-based fully convolutional neural network to automatically detect 

cracks from levee images at a pixel level. We propose that the feature learning be strengthened using the 

decoder and bottleneck feature maps by concatenating them back to the encoder blocks. The addition 

reinforcement in the U-Net-like architecture results in a loop-like structure to exploit all the feature maps from 

encoders, bottlenecks, and decoders. The proposed architecture, Iterative Loop U-Net (IterLUNet), 

outperforms the state-of-the-art architectures on the image dataset of the levee system, achieving an increment 

of Intersection over Union (IoU) by 10.32% on average for a 10-Fold Cross-Validation (FCV) compared to 

the baseline U-Net model and 11.00%, 7.65%, and 7.43%  with a range of latest models MultiResUnet, 

Attention U-Net, and Unet++ respectively. In addition, IterLUNet has at least 63% fewer parameters to be 

trained than the baseline model, thus, allowing less space consumption for pixel-wise crack detection in AI-

based inspection of levee systems. 

INDEX TERMS Crack Detection, Deep Learning, Floodwalls, Image Segmentation, Levees

I. INTRODUCTION 

Levees are embankments constructed along a body of water 

to control and prevent flooding of lands adjacent to the water. 

The systematic assessment and maintenance of the levee are 

vital to avoid any potential disastrous events caused by the 

levee’s failure, as experienced in New Orleans in 2005 [1, 2]. 

The levee failure could be caused by several deficiencies, 

including cracks, seepages, internal erosion, and animal 

burrowing. Among these defects, cracks are commonly 

developed that are easily perceivable by the human eye and 

are compelling reasons for the collapse of levees. Thus, 

locating cracks to monitor and maintain the system 

periodically is essential to prevent potentially catastrophic 

destruction caused by levee failure [2]. Currently, the 

inspection of the flood water control system is done 

manually. Mostly, the field investigators physically gather or 

fly drones to capture images, followed by hours of manual 

checking for any faults [1, 3]. 

The current inspection method is expensive, slow, and 

laborious. This research introduces a high-performance, fully 

automated AI-based inspection solution using an encoder-

decoder-based fully convolutional neural network architecture 

to detect cracks from the levee images. Unlike traditional 

machine learning methods, which operate on hand-engineered 

features, the proposed deep learning architecture directly learns 

meaningful underlying representations of cracks from the 

image dataset. Of course, the training process requires a 

considerable amount of labeled data which is a challenge in 

flood control systems where there is a lack of images with 

cracks to train and evaluate models. In the meantime, 

collecting levee crack images is labor and time intensive. In 

light of this, we aim to develop a deep learning architecture that 

can be trained using a small labeled dataset and is capable of 

assisting during the field investigation performed through a 

handheld device or unmanned aerial vehicles. 

The primary purpose of pixel-wise segmentation in this 

study is to separate crack pixels from non-crack pixels to 

accurately locate cracks in the levee from images and measure 

their size, provided the scale of the image. Several state-of-the-

art fully convolutional neural network-based architectures, 

FCN [4], SegNet [5], and U-Net [6], had been applied before 
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to perform semantic or pixel-wise segmentation of cracks in 

structural health monitoring settings. The contributions of the 

proposed model in this paper can be summarized as follows: 

• Based on the hypothesis that decoder and bottleneck 

outputs can reinforce the model’s learning, we 

propose Iterative Loop U-Net (IterLUNet), an 

encoder-decoder and a decoder-encoder combined 

deep learning model with three different high-

performing model components. 

• A new benchmark dataset for performing image 

segmentation on levee crack images. 

Discussion on performance comparison of the proposed 

model with the four latest methods. The proposed IterLUNet 

outperforms other models in terms of Intersection over Union 

(IoU) and F1 scores. 

II. RELATED WORKS 

A. NETWORK ARCHITECTURE 

Recent deep learning methods have achieved state-of-the-art 

results on challenging computer vision problems like image 

classification, object detection, and image segmentation [7]. 

The Convolutional Neural Network (CNN or ConvNet) has 

significantly advanced deep-learning methods [8] by 

introducing three layers - the convolutional layer as a feature 

extractor, the activation layer to add non-linearity, and the 

pooling layer to maintain the spatial dimension. Consequently, 

CNN gained popularity mainly because it automatically 

extracted essential features through successive convolutional 

layers. On the grounds of components of CNN,  Long et al. [4] 

proposed Fully Convolutional Network (FCN), a breakthrough 

in deep-learning-based end-to-end image segmentation 

methods without fully connected layers. The FCN was then 

extended to encoder-decoder architectures. The encoders in 

encoder-decoder architecture extract features from the images, 

and the decoders map low-level features from encoders to an 

output segmentation mask [4-6]. U-Net is a widely used 

encoder-decoder architecture that succeeded as a baseline 

model for image segmentation tasks in medical imaging [6]. U-

Net, having skip connections from the encoder to the decoder 

helps retrieve any spatial information lost in the down-

sampling path of the encoders. Thus, in this study U-Net model 

is further improved to address the limitation and complexities 

of the levee crack dataset. 

B. CRACK DETECTION 

A considerable volume of literature has been published on 

automatically detecting cracks, ranging from U-Net 

architecture [9] to several variations of U-Net [9-22]. These 

approaches have a symmetrical contracting-expansive path 

with skip-connections concatenating encoder and decoder 

feature vectors. Likewise,  Zou et al. [22] developed 

DeepCrack, a  SegNet-like architecture, to demonstrate the 

utilization of multi-scale convolutional features for better 

results and model convergence. In DeepCrack, encoder and 

decoder outputs are connected to build a single-scale fused 

feature map. The hierarchical feature maps are combined to 

produce a multi-scale fusion map which is further used to 

compute loss and the final output mask. 

Past crack segmentation studies have only focused on 

concatenating encoder and decoder outputs. In contrast, the 

proposed model improves performance by utilizing learned 

features from the decoder and bottleneck layer to feed the 

feature map back to the encoder. Similarly, most deep learning 

approaches detect cracks on concrete or asphalt surfaces, 

predominantly in civil infrastructure. However, our research is 

concentrated on cracks using image segmentation only on the 

levee system, where cracks develop on the slopes, crest, 

concrete floodwalls, and areas nearby the structure. 

Lately, detecting cracks in the levee system has gained 

interest [23] by using object detection methods. The authors in 

[23] analyzed machine learning and deep learning-based 

techniques and suggested a lightweight stacking-based model 

for edge devices like drones. The significant difference in this 

research is that, unlike in [23], where the authors detected a 

bounding box of cracks, the architecture developed in this 

study uses a pixel-based annotated levee dataset to perform 

semantic or pixel-level detection of cracks. Detection of cracks 

using a pixel-level approach qualifies for precise identification 

of crack regions on the levee systems, a clear advantage over 

using a bounding box approach. 

III. PROPOSED ARCHITECTURE 

The baseline architecture U-Net has skip connections only 

from the encoder to the decoder to avoid missing spatial 

information that may have been lost in the contracting path. 

The fundamental hypothesis constructed for the architecture 

design of IterLUNet is that the higher-level features from 

expanding paths also have relevant information which could 

be helpful during training. Thus, the proposed architecture is 

based on building connections from the expanding path back 

from the decoder to the encoder to represent the complexity 

of cracks. 

In a deep learning model, learning more parameters 

while training is prone to overfitting for a small dataset. With 

a larger model, performing nearly real-time accurate 

segmentation of crack pixels from the non-crack pixels is also 

not feasible. Hence, a depthwise separable convolution and 

iterative loop-like structure are introduced to address the 

growing number of parameters and optimize the architecture 

to achieve higher performance. The decoder and bottleneck 

feature maps are iteratively concatenated to the encoder’s 

input at the next stage using simple skip connections in a U-

like shape, hence named Iterative Loop U-Net (IterLUNet), 

as illustrated in Fig. 3. 

A.  BUILDING BLOCKS 
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The primary components of IterLUNet are InitialBlock, 

Squeeze and Excitation (SE) Block, IntermediateBlock, and 

Iterative Loop Block (IterLBlock). In Fig. 1, substructure A, 

substructure B, and substructure C depict InitialBlock,  

IterLBlock, and IntermediateBlock, respectively, which are 

discussed in detail in the following sections. 

1) INITIALBLOCK 

In [24], the authors show that the structure of an inception 

module with factorized asymmetric convolutions does not 

work well in the early layers. Since IterLUNet trains on a small 

dataset, the classic convolution layer in InitialBlock instead of 

an inception module helps reduce model complexity. The 

InitialBlock has one set of 3 × 3 convolution with a stride of 1, 

followed by batch normalization and ReLU activation as 

shown in Fig. 1. substructure A. It is the initial convolution 

block used in the first encoder in every iteration and produces 

64 feature maps. 

2) SE BLOCK 

The skip connections combine low-level and high-level feature 

maps. Therefore, it is essential to recognize and prioritize 

meaningful latent representations. Thus, the Squeeze and 

Excitation (SE) block [25] and its variant, concurrent channel, 

and spatial SE (csSE) block proposed in [21] are used in the 

architecture. The SE block Squeezes along the spatial domain 

and Excites or reweights the channels. The advanced version 

of SE, csSE, on the other hand, emphasizes the use of proper 

channels and spatial information. Therefore, the SE and csSE 

blocks in the architecture recalibrate the feature space spatially 

and channel-wise, which is one way to optimize the network 

with a slight increment in model complexity and computational 

cost. 

3) INTERMEDIATEBLOCK 

The IntermediateBlock is comprised of a single Depthwise 

Separable Convolution followed by a csSE block, as observed 

in substructure C of Fig. 1. In Depthwise Separable 

Convolution (DSC) layer, the two separate cascaded 

operations generate latent representations of the concatenated 

intermediate feature maps. The first operation is 3 × 3 

depthwise Convolution with a stride of one, dilation of one, and 

a depth multiplier to perform channel-wise spatial convolution.  

Later 1 × 1 point-wise convolution operation with stride 

one follows batch normalization operation and ELU activation 

in the intermediate block, as shown in Fig. 1. The performance 

using ELU activation and batch normalization is a little 

enhanced and consistent compared to using ReLU activation 

mostly because ELU avoids dying ReLU problem and 

FIGURE 1. Substructure A is the standard initial convolutional block, Substructure B is the Inception-like module, IterLBlock, used in the encoder-
decoder layers of IterLUNet. and Substructure C is the intermediate block with depthwise separable convolution followed by concurrent channel and 
spatial SE block. Here, #filters represent a total number of output filters after convolution operation or average pooling. 
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improves generalization through faster learning [26]. The DSC 

layer in the intermediate block performs similarly to the 

traditional convolution layer; however, the layer’s significant 

advantage is that it lowers the number of training parameters. 

Finally, adding the csSE block after convolution operations 

ensures that concatenated filters are relevant both spatially and 

channel-wise to add value to the performance gain of the 

model.  

4) ITERATIVE LOOP BLOCK (ITERLBLOCK) 

The balance of width and height in the proposed architecture 

is accomplished by managing a number of output filters 

produced throughout the network and recalibrating the 

importance of filters for optimal performance. Accordingly, 

the convolutions of larger spatial filters are factorized while 

retaining a growing number of filters in IterLUNet. The 

proposed substructure, iterative loop block (IterLBlock), 

follows the design principles introduced in [24], factorizing 

more extensive filter-sized operations into asymmetric 

convolutions. The inception module-like substructure B has 

1 × 1, 3 × 3, and 5 × 5 convolutions, as shown in Fig. 1. The 

5 × 5 convolution operation is computationally expensive and 

slow, so it is replaced with 3 × 3 convolutions, which are 

further factorized into two asymmetric convolutions, 1 × 3  

and 3 × 1 convolution. The order of operations is illustrated 

in Fig. 1. Substructure B. After each convolution operation, 

ReLU non-linearity follows a batch normalization layer. 

After each convolution operation, ReLU non-linearity 

follows a batch normalization layer. Throughout the network, 

the batch normalization layer after each convolution adds 

regularization, reducing the need for a dropout layer, 

subsequently avoiding overfitting the model on the levee 

crack dataset. 

The substructure B operates as a feature extractor 

conceptually similar to a classic convolutional layer. As the 

network advances more in-depth, the input to IterLBlock 

eventually receives a higher-dimensional feature vector since 

features of different scales and dimensions are concatenated. 

The higher dimensional feature vector is predisposed to 

exploding during training without advanced computational 

resources. So, IterLBlock adds computational efficiency 

without compromising the model’s performance through two 

factors. Firstly, 1 × 1 convolution aims to reduce the 

dimensionality of the feature vector by compressing 

channels. The 1 × 1 convolution has made it possible to 

perform further expensive 3 × 3 and 5 × 5 convolutions for 

higher-dimensional input feature vectors. Secondly, stacking 

SE block or its variation after concatenation in the inception 

module as shown in Fig. 1. Substructure B with batch 

normalization has rectified the learning and added 

regularization in the network [27] . 

B. LOOPS AND ITERATIONS 

In IterLUNet, loops are created to support connections from 

the decoder to the encoder. As the links increase, the number 

of encoder-decoder blocks also grows, leading to three 

iterations to match output filter numbers with the baseline 

model. The initial encoder in each iteration uses InitialBlock 

with 64 output feature maps extracted from the input RGB 

image, whereas decoders and bottlenecks apply IterLBlock, as 

illustrated in Fig. 3. After the first iteration, the pooling layer 

output is concatenated with the output of the respective 

expanding path to maintain the spatial dimension of the input 

feature vector for the succeeding encoder. 

The first iteration has a simple U-like structure with one 

set of encoder-decoder blocks and a bottleneck layer of total 

filters {64, 128}. The second iteration starts exploring the 

output vector of the decoder and bottleneck layer of the first 

iteration. Immediately from the second iteration onwards, the 

number of encoder and decoder blocks increases. After that, 

IntermediateBlock accepts concatenated feature vectors as 

input. The number of output filters in the second iteration 

evolves to {64, 128, 256}. In the third iteration, pursuing the 

same idea of concatenating feature vectors, the output filter 

numbers in the contracting path become {64, 128, 256, 512}. 

Finally, 1 × 1  convolution is applied with a sigmoid activation 

of the output of the final decoder of the third iteration to obtain 

a binary segmentation mask. 

IV. EXPERIMENTS 

This section demonstrates the performance of Iter3LUNet by 

showcasing state-of-the-art results on the levee crack dataset 

and an independent evaluation crack dataset. 

A. DATASET 

The dataset of levee crack images has been collected over the 

years by the field inspectors of the New Orleans district of the 

U.S. Army Corps of Engineers (USACE). The collected levee 

images have cracks in the levee’s crest, concrete floodwalls, 

slopes, and even on and surrounding areas of the levee 

system. It can be observed that the images have different 

shapes and sizes of cracks on diverse backgrounds and 

surroundings. Fig. 2. (a), (b), (c), and (d) is the set of sample 

images with their ground truth. The levee crack dataset was 

first introduced in [28], which comprises 1650 images, and is 

FIGURE 2. (a), (b), (c), and (d) are each set of one sample image and its 
corresponding segmentation mask. 
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used to conduct 10-Fold Cross-Validation of the proposed 

model and compare it with the latest encoder-decoder-based 

image segmentation models. 
Additionally, 101 original levee crack images were 

annotated using the VGG Image Annotator tool  [29] to 

generate ground truths. Thus, the independent test dataset had 

26 levee images, whereas the remaining 125 images were set 

for preprocessing. To further analyze the robustness of 

models, we also used the road crack dataset named 

DeepCrack proposed by Liu, Yahui, et al. in their crack 

detection paper [20]. DeepCrack test dataset has 237 images 

with their respective masks. 

B. PRE-PROCESSING 

A significant challenge in building a deep learning model for 

real-world scenarios is maintaining the quality of training and 

evaluation datasets. Fig. 2. shows the sample dataset has 

diverse textures and scenes, cracks of different scales, and 

undefined boundaries. The deep learning models should be 

robust enough to generalize on such a dataset. Thus, the 

preprocessing approach included carefully selecting original 

images, generating ground truth, applying augmentation 

techniques [30], and analyzing the performance of the baseline 

method. Based on the iterative approach, images and 

augmentation techniques contributing to the model learning 

process were determined. The twenty-nine augmentation 

techniques selected include affine, elastic, and pixel-level 

transformations (ColorJitter, GaussianBlur, and 

GaussianNoise). Additionally, augmented levee crack images 

were resized to 256 × 256 due to computational constraints. 

Table I presents the statistics of the datasets for each 

experiment.  

 

TABLE I 

 TOTAL NUMBER OF IMAGES SEPARATED FOR TRAIN AND TEST 

FIGURE 3. Proposed Iterative Loop U-Net (IterLUNet) Architecture. The loop structure allows utilization of the output feature maps of decoders and 
bottlenecks. Simple feature concatenation is used as Skip connection. Features of the original image are extracted at the beginning of each loop. 
Different blocks used in the design are illustrated in Fig. 1. 
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Experiments 
Training 

Images 

Independent 

Test Images 

Augmented 

Images 

Experiment 1 55 10 1650 

Experiment 2 125 26 3750 

C. EVALUATION METRICS 

The datasets have a dominance of non-crack pixels over crack 

pixels. A pixel accuracy alone cannot reflect the performance 

of segmentation models. Thus, the models were assessed based 

on the accuracy of locating crack pixels and computing overlap 

scores between a predicted mask and ground truth. Equations 

(1), (2), and (3) represent Intersection over Union (IoU) for 

crack pixels, F1 score, or Dice coefficient as metrics to 

evaluate models and the dice loss function to train the models. 

Dice loss addresses the class imbalance problem between crack 

and non-crack pixels to achieve the expected purpose. 

𝐼𝑜𝑈 𝐶𝑟𝑎𝑐𝑘 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

 (1) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 𝑜𝑟 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

=  
2 𝑥 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)  + (𝑇𝑃 +  𝐹𝑁)
 

 (2) 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =   1 −  𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  (3) 

Here, TP, FP, and FN represent true positive, false 

positive, and false negative segmentation of crack pixels  

D. EXISTING MODELS 

We compared IterLUNet to the U-Net [6] as the baseline model 

and the three advanced methods MultiResUNet [31], Attention 

U-Net [32], and UNet++ [33]. These methods implement 

encoder-decoder concepts and maintain filter numbers {32, 64, 

128, 256, 512} which are the primary reasons for comparative 

analysis. Additionally, the selected models are well established 

in medical image segmentation, where the datasets have 

irregular shapes and variable sizes of objects with noisy or ill-

defined boundaries. Table II shows all models’ total number of 

parameters and Floating-Point Operations per Second 

(FLOPs). It can be observed that the IterLUNet has seventy 

percent fewer parameters to train on average than the base 

models. 

E. EXPERIMENTAL SETUP 

All segmentation models were implemented using the Keras 

framework and trained on NVIDIA K80 GPU. The 

convolutional layers in each model were initialized using He 

Initialization [34]. For a 10-Fold CV, the models were trained 

to minimize binary cross-entropy with logits with an Adam 

optimizer using a batch size of 4 for 150 epochs. The initial 

learning rate (LR) was 1e-3 but decayed by 0.25 after every 

five epochs when the validation F1 score plateaued to the 

minimum value of 15e-6. Furthermore, early stopping was 

include included to avoid overfitting during the model’s 

training for each fold set. 

For the second experiment, fifteen percent of an extended 

dataset of 3750 augmented images was used to validate and 

save the best-performing model. All models were trained to 

minimize dice loss with an Adam optimizer using a batch size 

of 4. We used an initial LR of 1e-4, which was reduced on a 

plateau by 0.15 after every five epochs until a minimum value 

of 15e-8. Fig. 7 shows the changes in the learning rate for each 

model during the training course. Finally, the model with the 

lowest validation loss over 80 epochs was saved to evaluate on 

independent test datasets.   

TABLE II 

STATISTICS OF THE TOTAL NUMBER OF TRAINING AND NON-TRAINING 

PARAMETERS OF ALL ARCHITECTURES 

Models 
Trainable 

parameters 

Non-trainable 

parameters 

FLOPs 

(G) 

U-Net (M1) 7.76E+06 5.88E+02 12.11 

MultiResUNet (M2) 7.24E+06 2.45E+04 15.81 

Attention U-Net (M3) 8.90E+06 9.73E+03 17.24 

UNet++ (M4) 9.16E+06 7.30E+03 34.54 

Iter3LUNet (M5) 2.87E+06 1.53E+04 16.41 

V. RESULTS 

A. 10-FOLD CV PERFORMANCE 

The trained models are evaluated using a held-out test dataset. 

The evaluation metrics - mean IoU (mIoU), IoU for crack 

pixels, and F1 score (F1) for each fold were also recorded. 

Table III. shows the average metrics presented in percentage 

ratios (%) of 10-Fold Cross-Validation (FCV) and hold-out test 

images for all models. The performance of the proposed 

architecture based on the metric F1 measure, on average, is 

7.4% greater than the baseline U-Net (M1) model. 

TABLE III 

PERFORMANCE COMPARISONS OF THE PROPOSED ITERLUNET AND U-NET 

MODELS BASED ON A 10-FCV (VALID) AND A HOLD-OUT TEST DATASET (TEST) 

Models 
mIoU 

(%) 

IoU Crack 

(%) 

F1 

(%) 

M1 Valid 87.18 71.08 80.33 

M2 Valid 87.78 70.54 79.92 

M3 Valid 87.16 73.19 81.76 

M4 Valid 87.50 73.37 81.86 

M5 Valid 90.75 79.26 86.73 

M1 Test 85.86 70.13 79.70 

M2 Test 87.77 70.19 79.90 

M3 Test 86.90 72.80 81.67 

M4 Test 86.97 72.80 81.53 

M5 Test 90.06 78.91 86.64 
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Furthermore, the best-performing model from 10-FCV 

was also evaluated on an independent levee crack dataset. It is 

observed in Fig. 4 MultiResUNet (M2) detected non-crack 

pixels better than crack, regardless of the higher mIoU. Both 

Attention U-Net (M3) and UNet++ (M4) performed well on 

independent levee crack images while generating segmentation 

masks, as shown in Fig. 4. Nevertheless, IterLUNet 

consistently achieved impressive IoU and showed superiority 

in complex backgrounds over all the latest models. The 

FIGURE 4. Examples from the independent levee crack test dataset. Each column above represents a mask overlaid on the original image. White-colored 
masks are predicted segmentation masks for U-Net (M1), MultiResUnet (M2), Attention U-Net (M3), and UNet++ (M4). The red-colored mask is the ground 
truth, and the blue mask is the predicted segmentation mask by IterLUNet (M5). 
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proposed model detected boundaries of the cracks more 

precisely while the other models struggled to do so. 

Meanwhile, the best-performing model for each 

architecture with the lowest gap between training and 

validation dice-coefficient was selected to evaluate on an 

independent test dataset. As shown in Fig. 4, results indicate 

that pixel-wise prediction of cracks on completely independent 

test data is relatively low for all models. Every model faced 

FIGURE 5. Evaluation on examples of DeepCrack test dataset. Each column in the above figure represents a mask overlaid on the original image. White-
colored masks are predicted segmentation masks for U-Net (M1), MultiResUnet (M2), Attention U-Net (M3), and UNet++ (M4). The red-colored mask is the 
ground truth, and the blue mask is the predicted segmentation mask by IterLUNet (M5). 
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difficulties locating crack pixels for some images. Given the 

limited proportions of the levee crack dataset, ten independent 

test images did not represent the training and validation images 

adequately. The challenge was also due to the difference in the 

distribution of crack regions, shapes, and background texture 

between the independent levee crack dataset and the training 

data. It requires additional original images with well-defined 

crack areas to yield a robust and high-performing model. This 

is the primary reason for performing augmentation and 10-Fold 

CV to show a need for a robust architecture that generalizes 

well on unseen levee crack images. 

B. Comparative Analysis 

All architectures are trained on overall augmented images in 

the second experiment and evaluated with two independent test 

datasets. Table IV shows metrics on the independent levee 

crack test datasets. The proposed model, IterLUNet, 

outperformed baseline architecture and the three latest best-

performing models. We noticed that the increase in the number 

of original crack images and their ground truth had increased 

the performance of models. Fig. 6 depicts the proposed 

model’s training and validation dice-loss and dice-coefficient 

curves over 80 epochs. With the trend of decreasing the gap 

between training and validation metrics, the complexity of the 

proposed model stands fit for the levee crack dataset. 

A public benchmark dataset to evaluate road crack 

detection system, DeepCrack [20], was used to assess trained 

models on the levee crack dataset. Table V shows the metrics, 

and Fig. 5 represents a few sample results on the independent 

test dataset from out of the domain. The differences in 

predicted segmentation masks overlaid on original images are 

shown in Fig. 5. The outcomes indicate that IterLUNet 

consistently predicts cracks and has a better detection ability 

on unseen images. Together these results provide insights into 

boundary information and the shapes of cracks better predicted 

by the proposed architecture. 

The most striking finding of this experiment was that 

IterLUNet could separate the region of interest even from the 

rough background, observed in Fig. 4 and Fig. 5. Furthermore, 

the proposed model has higher precision and recall avoiding 

faulty detection of true positives that may result in a 

devastating outcome. So, having a model with a higher recall 

or true positive rate is crucial in an automatic crack detection 

system, as such a model is likely to decrease the 

misidentification of crack pixels. 

TABLE IV 

PERFORMANCE OF TRAINED MODELS ON HOLD-OUT INDEPENDENT LEVEE 

CRACK TEST DATA 

Models 
mIoU 

(%) 

IoU 

(%) 

P 

(%) 

R 

(%) 

F1 

(%) 

M1 61.76 28.19 61.89 38.48 41.62 

M2 63.48 24.98 64.42 31.66 36.37 

M3 61.92 28.02 61.61 39.68 41.72 

M4 62.54 29.34 59.77 39.75 43.01 

M5 62.22 32.30 59.81 45.68 47.00 

Here, P and R refer to Precision and Recall, respectively. 

 TABLE V 

PERFORMANCE OF TRAINED MODELS ON DEEPCRACK BENCHMARK DATASET 

Models 
mIoU 

(%) 

IoU 

(%) 

P 

(%) 

R 

(%) 

F1 

(%) 

M1 68.32 43.68 76.70 52.14 58.75 

M2 68.20 39.53 80.52 43 53.35 

M3 68.47 42.11 70.46 52.89 56.45 

M4 68.20 45.15 77.17 54.23 60.04 

M5 66.58 49.13 75.25 61.69 64.14 

Here, P and R refer to Precision and Recall, respectively. 

V. CONCLUSION 

In this study, we proposed an encoder-decoder-based fully 

convolutional neural network architecture, IterLUNet, to 

automatically detect cracks on the levee using a pixel-wise 

segmentation approach. Further, a benchmark dataset with 

levee crack images and corresponding ground truth 

segmentation masks was also introduced. This paper 

experimentally argued that expanding the path of an encoder-

decoder architecture also has helpful training information. 

Thus, we added decoder and bottleneck outputs back to the 

encoder, which resulted in a substantial increase in F1 score 

and IoU, validating our hypothesis experimentally. The 

proposed architecture outperformed all the advanced 

FIGURE 6.  Dice-losses and dice-coefficients for IterLUNet at each epoch 
for training and validation dataset of experiment 2. 

FIGURE 7. This figure shows the decay in learning rate (lr) on the plateau 
by a factor of 0.15 after five epochs. The initial learning rate for IterLUNet, 
MultiResUNet, and Attention U-Net could be lower than 1e-4 for faster 
convergence. 
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architectures in terms of 10-Fold CV metrics and metrics on 

independent test datasets despite having nearly 63% fewer 

training parameters. Thus, the proposed concept helps improve 

overall IoU across semantic segmentation tasks. Availability of 

code and data here. 
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