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Abstract 

Many biologically active proteins/protein regions fail to form a stable three-dimensional structure, yet they 

exhibit biological functions. These proteins are called Intrinsically disordered proteins (IDPs), and the 

regions are called Intrinsically disordered regions (IDRs). They play vital roles in various biological 

processes. These disordered regions have significant implications in properly annotating function and drug 

design for critical diseases. IDRs are structurally and functionally very different from ordered proteins and 

therefore require special experimental and computational tools for identification and analyses. Thus, the 

identification of IDRs is a time-consuming task. This research aims to develop a machine learning method 

to predict proteins’ disordered regions (IDRs) accurately. We have developed a novel method named 

Dispredict3.0, the evolutionary information from a protein language model. Our method shows superior 

performance compared to the state-of-the-art method. 
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Introduction 

Intrinsic disorder proteins and protein regions do not have a well-defined secondary and tertiary structure. 

We know that the disorder region of the protein has existed for 20 years [1]. For example, we have abundant 

disorder protein sequences, eukaryotes, in which disorder proteins are found in over 30% of proteins [2]. 

Though disorder proteins lack well-defined structures, they play important roles in many cellular processes. 

They are also the main reason related to various diseases [3]. 
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Several community-driven assessments were done to evaluate the disorder predictors. The first community-

driven assessment was held in 2005 in Critical Assessment of protein Structure Prediction (CASP) [4] to 

evaluate the disordered predictors. Recently, the Critical Assessment of Protein Intrinsic Disorder (CAID), 

which is specially designed to assess disorder prediction, was held in 2018 [4]. In CAID assessment 

evaluates several recent tools, i.e., fIDPnn [2], AUCpreD [5], ESpritz [6], RawMSA [7], SPOT-Disorder2 

[8], and SPOT-Disorder-Single [9]. The top-performing tool in CAID is the fIDPnn method (AUC= 0.814). 

The fIDPnn method extracts structural and functional information from different tools and encodes the 

features by aggregating the profile data at residue, window, and protein levels. They train a deep neural 

network for disorder prediction. 

In this work, we developed a novel disorder prediction name Dispredict3.0. The improvement comes from 

the representation of a protein language model which is trained on large protein sequences. Recently we 

have seen several protein languages models in the literature, i.e., Evolutionary Scale Modeling (ESM) [10], 

DNABERT [11], RNABERT [12]. ESM trains a deep contextual language model on 86 billion amino acids 

across 250 million protein sequences spanning evolutionary diversity, and the trained model contains 

information about biological properties in its representations. The representations are learned from 

sequence data alone. The authors show that the learned representation space has information on the structure 

of proteins from the level of biochemical properties of amino acids to the remote homology of proteins 

[10]. It also has information about the secondary and tertiary structures [10].  

The main contribution of this paper is to show that the representation from the protein’s language model 

has proven to improve protein disorder prediction. We have used an optimized Light Gradient Boosting 

Machine to train the machine learning model. We have experimentally shown that the Dispredict3.0 

outperforms the state-of-the-art method. 

 



Material and Method 

Dataset 

We have collected the same dataset used in the fIDPnn [2] method to have a fair comparison. The authors 

[2] of the fIDPnn method curated the 745 proteins dataset from the Disprot 7.0 database [13]. The Disprot 

database is the gold standard for disorder regions annotation. The disport database is consistently updated, 

and the recent release is from December 2021. The dataset has three-part- the train, test, and validation sets. 

The training, test, and validation set contain 445, 176, and 100 proteins. The training and test set share less 

than 25% similarities between them. The dataset is highly imbalanced in the number of ordered and 

disordered residues, as shown in Table 1.  

Table 1. Statistics of ordered and disordered residues in the training, test, and validation dataset.  

Disordered/Ordered Train Test 

No. of Disordered residues 50387 17871 

No. of Ordered residues 169565 48675 

Total No. of Residues 219952 66546 

 

Framework of Dispredict3.0 

Dispredict3.0 extracts residue-level, window-level, and protein-level information of protein sequence using 

the fIDPnn tool. The fIDPnn method extracts these features from other methods, i.e., PSIPRED [14], IUPred 

[15], PSI-BLAST [16]. We have used all the features from fIDPnn as the method performs very well in the 

last CAID [4] competition. Moreover, we extract evolutionary information from the Transformer based 

protein language model, named Evolutionary Scale Modeling (ESM), from Facebook AI Research [10]. 

ESM trains on large protein sequences and can represent residues. To reduce the dimensionality of ESM 

features, we have used Principal Component Analysis (PCA) [17]. Table 2 shows the number of features 

extracted from different tools. After collecting all the features from four different tools, we train an 

optimized Light Gradient Boosting Machine algorithm [18]. The framework of Dispredict3.0 is shown in 

figure 1.  



 

Figure 1. The framework of the Dispredict3.0 method for disordered prediction. Dispredict3.0 collects features from fIDPnn, and 

ESM and trains a Light Gradient Boosting Machine for disorder prediction. 

Table 2. The number of features extracted from different tools. 

Methods No. of Features 

fIDPnn 317 

ESM 3843 

Total Features 4160 

 

Performance Evaluation Metrics 

To evaluate the performance of Dispredict3.0, we have selected widely used metrics for the 

imbalance dataset, i.e., the Area under Receiver operating characteristic curve (AUC), F1-score, 

Mathews Correlation Coefficient (MCC), and Kappa score. ROC Curve represents the performance 



of a classifier at various threshold settings. AUC metric is threshold dependent, whereas F1-score, 

MCC, and Kappa metrics are threshold independent. Table 3 shows the definition of the selected 

metrics. 

Table 3. Performance Metrics 

Name of Metric Definition 

True Positive (TP) Correctly predicted positive samples 

True Negative (TN) Correctly predicted negative samples 

False Positive (FP) Incorrectly predicted positive samples 

False Negative (FN) Incorrectly predicted negative samples 

F1-score (Harmonic mean of precision and recall) 
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Mathews Correlation Coefficient (MCC) 
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

Kappa 
2 × (𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁)

(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑃 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

 

Results 

Prediction of intrinsic disorder 

To find the best method for disorder prediction, we experiment with the eight machine learning 

methods. Table 4 shows the cross-validation results on the training dataset in terms of the metrics 

AUC, F1-score, kappa, and MCC. We found that, on average, Light Gradient Boosting Machine 

performs better.  

Table 4. Comparison of individual machine learning methods’ prediction results in 10-fold cross-validation on the 

training dataset. 

Model AUC F1-score Kappa MCC 

Light Gradient Boosting Machine 0.982 0.901 0.864 0.867 

Decision Tree Classifier 0.933 0.905 0.865 0.865 

Extra Trees Classifier 0.967 0.840 0.785 0.798 

Gradient Boosting Classifier 0.936 0.798 0.727 0.736 



Linear Discriminant Analysis 0.917 0.760 0.668 0.670 

Logistic Regression 0.917 0.756 0.660 0.661 

Ada Boost Classifier 0.900 0.721 0.619 0.624 

K Neighbors Classifier 0.801 0.619 0.455 0.455 

 

Ablation analysis 

We have also experimented with the effect of each feature set in terms of prediction. Table 5 shows 

the test set results with an incremental increase of the features set. We found that adding 

representation from different layers of ESM helps to have a better prediction. If we collect 

representation from all 34 layers, each residue is represented by a large matrix of size (34 × 1281). 

So, we have implemented an incremental PCA to reduce the dimension. We have selected the 

number of components as 3184 to retain 93.02% variance of the original data. We found that the 

reduced dimension from PCA helps achieve better AUC and F1-score. Our training dataset is 

highly imbalanced (Table 1), and F1-score, kappa, and MCC are threshold-dependent metrics. As 

discussed in the next section, these motivate us to find the optimum threshold value. 

 

Table 5. Analysis of the effect of different feature sets. 

Name AUC 
F1-

score 
Kappa MCC 

Imp-

AUC 

Imp-

F1-

score 

Imp-

Kappa 

Imp-

MCC 

Imp-

Average 

Base Scores (fIDPnn) 0.837 0.558 0.445 0.469           

fIDPnn 0.834 0.575 0.447 0.455 -0.32 3.21 0.45 -2.94 0.10 

fIDPnn + Layer 0 0.831 0.580 0.454 0.461 -0.69 4.08 1.89 -1.53 0.94 

fIDPnn + Layer 0 and 33 0.851 0.610 0.487 0.491 1.67 9.38 9.22 4.86 6.28 

fIDPnn + Layer 33 0.852 0.615 0.495 0.501 1.81 10.33 11.15 6.90 7.55 

fIDPnn + Layer 15 0.851 0.620 0.502 0.508 1.65 11.29 12.74 8.44 8.53 

fIDPnn + Layer 0 and 15 0.849 0.624 0.506 0.512 1.47 11.88 13.60 9.20 9.04 

fIDPnn + Layer 15 and 33 0.854 0.632 0.517 0.523 2.11 13.32 16.00 11.52 10.74 

fIDPnn + Layer 0, 15 and 33 0.857 0.631 0.518 0.525 2.37 13.25 16.25 11.97 10.96 

fIDPnn + PCA 0.858 0.633 0.517 0.522 2.56 13.62 16.12 11.45 10.94 

Best score values are bold-faced. Here, ‘Imp’ stands for improvement. The ‘Imp’ indicates the improvement in percentage 

achieved by Dispredict3.0 over the Base Scores (fIDPnn) for the corresponding evaluation metric. 

 



Threshold Optimization 

Threshold Optimization is considered an important part of machine learning, especially when the 

training dataset is highly imbalanced. The trained model becomes biased to one class for the 

imbalanced dataset. We optimize the threshold based on the ROC AUC curve to overcome the 

problem. Threshold optimization can be done based on the training or the validation set, or both. 

We found the best threshold=0.353 when we take an average of the optimum threshold from both 

the training and validation dataset, as shown in Table 6. 

 

Table 6. Threshold optimization based on the training and validation set.  

Name 
Thres

hold 
AUC 

F1-

score 
Kappa MCC 

Imp-

AUC 

Imp-

F1-

score 

Imp-

Kappa 

Imp-

MCC 

Imp-

Average 

Base Scores 

(fIDPnn) 
0.500 0.837 0.558 0.445 0.469 - - - - - 

Default 

threshold 
0.500 0.858 0.631 0.516 0.522 2.49 13.09 15.73 11.33 10.66 

Training Set 0.583 0.858 0.616 0.504 0.516 2.49 10.46 13.24 10.11 9.08 

Validation Set 0.123 0.858 0.655 0.505 0.514 2.49 17.47 13.44 9.66 10.76 

Training + 

Validation Set 
0.353 0.858 0.648 0.525 0.525 2.49 16.14 17.76 12.09 12.12 

Here, ‘Imp’ stands for improvement. The ‘Imp’ indicates the improvement in percentage achieved by Dispredict3.0 over the 

fIDPnn method for the corresponding evaluation metric. 

 

Comparison with existing methods 

We compare Dispredict3.0 with six recently published disorder predictors. All results are 

generated by running the tool on our own server. Dispredict3.0 outperforms all of them. Compared 

to the state-of-the-art methods, Dispredict3.0 has an improvement of 2.54%, 16.22%, 12.05%, and 

17.85% in terms of AUC, F1-score, MCC, and kappa, respectively. Table 7 and Figure 2 show that 

Dispredict3.0 outperforms all six predictors.  

 

Table 7. Comparison of Dispredict3.0 with the six disordered predictors.  



Method AUC F1-score MCC Kappa 

NetSurfP - 2.0 0.753 0.536 0.350 0.348 

IUPred3 0.762 0.584 0.412 0.407 

Metapredict 0.766 0.595 0.423 0.411 

Espritz 0.795 0.544 0.401 0.398 

SPOT-Disorder-Single 0.802 0.596 0.448 0.448 

fIDPnn 0.837 0.558 0.469 0.445 

DisPredict3.0  0.858 0.648 0.525 0.525 

Imp (%)  2.54% 16.22% 12.05% 17.85% 

Here, ‘Imp’ stands for improvement. The ‘Imp’ indicates the improvement in percentage achieved by Dispredict3.0 over the 

fIDPnn method for the corresponding evaluation metric. 

 

 

Figure 2. Comparison of Dispredict3.0 with the six disordered predictors.  

 

We have also plotted the ROC curve and precision-recall curve compared to the existing methods, 

as shown in Figures 3 and 4. The curve clearly Dispredict3.0 performs better than the other 

methods in terms of ROC curve and precision-recall curve. 



 

Figure 3. The ROC curve for different methods on the test dataset. 

 

Figure 4. The precision-Recall curve for different methods on the test dataset. 

Prediction of fully disordered proteins 

We further investigate the Dispredict3.0 prediction capabilities for the fully disordered proteins. 

Figure 5 shows the performance of Dispredict3.0 compared to the existing methods. The results 

of Dispredict3.0 are shown with an optimized threshold. The SPOT-Disorder-Single and IUPred3 

perform better in AUC and MCC, but Dispredict3.0 shows good results in terms of F1-score and Kappa.  



 

Figure 5. Performance comparison of Dispredict3.0 on fully disordered proteins. 

 

Conclusions 

Here we presented a novel disorder predictor, Dispredict3.0, that uses the representation from a  

protein langue model that helps to improve the performance of disorder prediction. Further, we 

have used PCA to reduce the dimensions of the representation and train an optimized Light 

Gradient Boosting Machine for disorder prediction. The experimental results show that 

Dispredict3.0 outperforms the existing methods for disorder prediction. Though the Dispredict3.0 

method depends on a large protein language model, the method is not computationally expensive. 

We plan to do a computation complexity analysis with other methods in the future. 

Furthermore, we will do a t-test analysis to show the statistical significance of Dispredict3.0 

compared to other methods. We are also developing a new test set from the latest Disprot release 

to show that the performance of Dispredict3.0 is robust. We believe this tool will be helpful to the 

researcher to find disorder regions.  
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