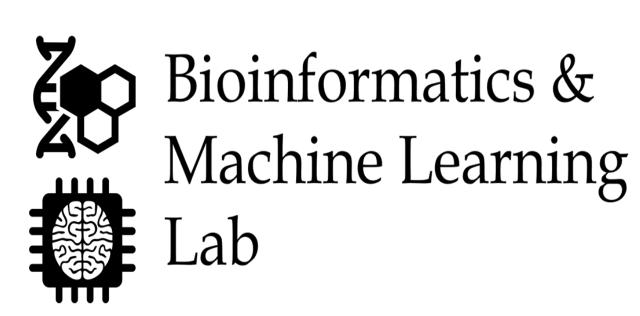
EGRC: Efficient inferring Gene Regulatory Network based on graph convolution network



Introduction

- Different cell types have distinct gene expression profiles, and cells differentiate from one cell state to another by modifying their expression profiles via gene transcription.
- Transcription factors (TFs) are protein molecules that regulate the transcription of a multitude of target genes.
- A network of TFs and their target genes are responsible for the normal function of a biological process.
- These TFs and their target genes form unique patterns.
- We developed a graph neural network-based method, named EGRC, that learns these patterns from TF-target relationships and then predicts TF regulatory networks from gene expression data.

Materials

Dataset	No. of TFs	No. of Genes
DREAM5 Network (In silico)	195	1643
DREAM5 Network (S. cerevisiae)	333	5949
DREAM5 Network (E. coli)	334	4511
DREAM5 Network (In silico)	195	1643
Network 5	30	392

Performance evaluation metrics Table 2: Name and definition of Performance Evaluation Metrics Definition Name of Metric

	Denninon		
Area under curve (AUC)	Area under the receiver operating characteristic curve		
AUPR	Area under the precision-recall curve		

Conclusion

- We developed a framework named EGRC to distinguish whether the extracted subgraph centered at two nodes contains the link between the two nodes.
- A pair that links between a transcription factor (TF) and a target gene and their neighbors are labeled as a positive subgraph, while an unlinked TF and target gene pair and their neighbors are labeled as a negative subgraph.
- According to the experiment's findings, the following factors may contribute to the GRN prediction power of the EGRC:
- (1) using an ensemble of heuristic skeletons.
- (2) using graph embedding can capture the topological structures of the network to predict the links.
- (3) improving the pooling layer (SAGPool technique) can improve a graph classifier's performance.
- We believe that the ability of our proposed method to infer GRN with higher accuracy will have a more significant impact on understanding biological systems and disease processes.

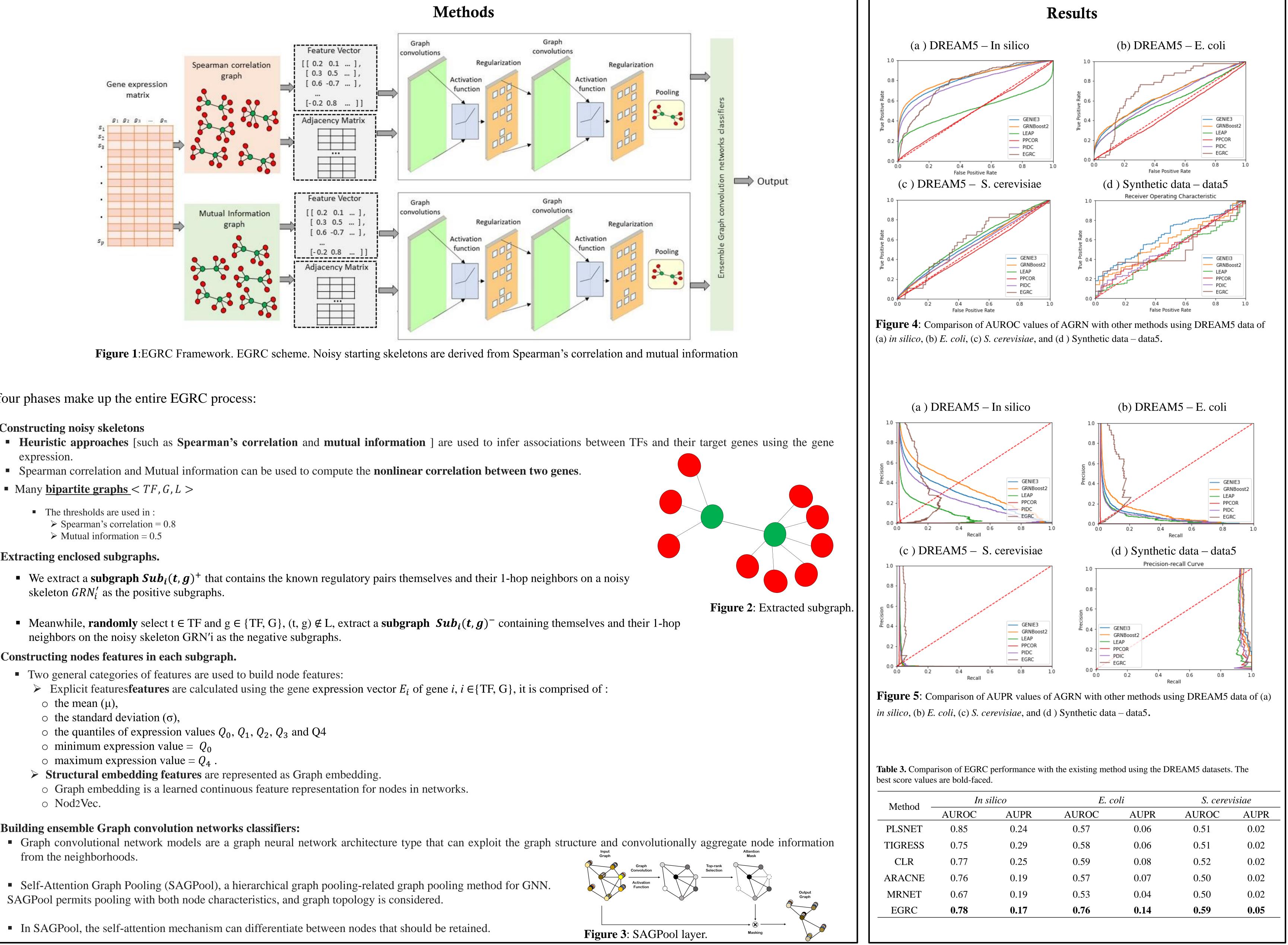
1) Constructing noisy skeletons

2) Extracting enclosed subgraphs.

4) Building ensemble Graph convolution networks classifiers:

Duaa Mohammad Alawad, Ataur Katebi^{2,3}, Md Tamjidul Hoque email: dmalawad@uno.edu, a.katebi@neu.edu, thoque@uno.edu

¹Department of Computer Science, University of New Orleans, New Orleans, LA, USA. ²Department of Bioengineering, Northeastern University, Boston, MA, USA. ³Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA.



• The four phases make up the entire EGRC process:

expression.

Many <u>bipartite graphs</u> < TF, G, L >

- The thresholds are used in : > Spearman's correlation = 0.8
 - > Mutual information = 0.5

skeleton GRN'_i as the positive subgraphs.

neighbors on the noisy skeleton GRN'i as the negative subgraphs.

3) Constructing nodes features in each subgraph.

• Two general categories of features are used to build node features:

- the mean (μ),
- \circ the standard deviation (σ),
- the quantiles of expression values Q_0 , Q_1 , Q_2 , Q_3 and Q4
- \circ minimum expression value = Q_0
- \circ maximum expression value = Q_4 .
- > Structural embedding features are represented as Graph embedding.
- Graph embedding is a learned continuous feature representation for nodes in networks. • Nod2Vec.

from the neighborhoods.

SAGPool permits pooling with both node characteristics, and graph topology is considered.

• In SAGPool, the self-attention mechanism can differentiate between nodes that should be retained.

	In silico		E. coli		S. cerevisiae	
	AUROC	AUPR	AUROC	AUPR	AUROC	AUPR
	0.85	0.24	0.57	0.06	0.51	0.02
)	0.75	0.29	0.58	0.06	0.51	0.02
	0.77	0.25	0.59	0.08	0.52	0.02
	0.76	0.19	0.57	0.07	0.50	0.02
	0.67	0.19	0.53	0.04	0.50	0.02
	0.78	0.17	0.76	0.14	0.59	0.05