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Introduction

Dataset No. of TFs No. of Genes

DREAM5 Network (In silico) 195 1643

DREAM5 Network (S. cerevisiae) 333 5949

DREAM5 Network (E. coli) 334 4511

DREAM5 Network (In silico) 195 1643

Network 5 30 392

Table 1: DREAM4 and DREAM5 Datasets.

• Different cell types have distinct gene expression profiles, and

cells differentiate from one cell state to another by modifying

their expression profiles via gene transcription.

• Transcription factors (TFs) are protein molecules that regulate

the transcription of a multitude of target genes.

• A network of TFs and their target genes are responsible for the

normal function of a biological process.

• These TFs and their target genes form unique patterns.

• We developed a graph neural network-based method, named

EGRC, that learns these patterns from TF-target relationships

and then predicts TF regulatory networks from gene

expression data.

Materials

(a ) DREAM5 – In silico (b) DREAM5 – E. coli

(c ) DREAM5 – S. cerevisiae (d ) Synthetic data – data5

Figure 4: Comparison of AUROC values of AGRN with other methods using DREAM5 data of 

(a) in silico, (b) E. coli, (c) S. cerevisiae, and (d ) Synthetic data – data5.

(a ) DREAM5 – In silico (b) DREAM5 – E. coli

(c ) DREAM5 – S. cerevisiae (d ) Synthetic data – data5

Figure 5: Comparison of AUPR values of AGRN with other methods using DREAM5 data of (a) 

in silico, (b) E. coli, (c) S. cerevisiae, and (d ) Synthetic data – data5.

Performance evaluation metrics

Name of Metric Definition

Area under curve (AUC)
Area under the receiver operating 

characteristic curve

AUPR Area under the precision-recall curve

Table 2: Name and definition of Performance Evaluation Metrics

Conclusion

Methods

▪ The four phases make up the entire EGRC process:

1)Constructing noisy skeletons

▪ Heuristic approaches [such as Spearman’s correlation and mutual information ] are used to infer associations between TFs and their target genes using the gene 

expression.

▪ Spearman correlation and Mutual information can be used to compute the nonlinear correlation between two genes.

2) Extracting enclosed subgraphs.

3) Constructing nodes features in each subgraph.

4) Building ensemble Graph convolution networks classifiers:

▪ Graph convolutional network models are a graph neural network architecture type that can exploit the graph structure and convolutionally aggregate node information

from the neighborhoods.

▪ Self-Attention Graph Pooling (SAGPool), a hierarchical graph pooling-related graph pooling method for GNN.

SAGPool permits pooling with both node characteristics, and graph topology is considered.

▪ In SAGPool, the self-attention mechanism can differentiate between nodes that should be retained.

Method
In silico E. coli S. cerevisiae

AUROC AUPR AUROC AUPR AUROC AUPR

PLSNET 0.85 0.24 0.57 0.06 0.51 0.02

TIGRESS 0.75 0.29 0.58 0.06 0.51 0.02

CLR 0.77 0.25 0.59 0.08 0.52 0.02

ARACNE 0.76 0.19 0.57 0.07 0.50 0.02

MRNET 0.67 0.19 0.53 0.04 0.50 0.02

EGRC 0.78 0.17 0.76 0.14 0.59 0.05

Results

▪ The thresholds are used in :

➢ Spearman’s correlation = 0.8

➢ Mutual information = 0.5 

▪ Many bipartite graphs < 𝑇𝐹, 𝐺, 𝐿 >

▪ We extract a subgraph 𝑺𝒖𝒃𝒊(𝒕, 𝒈)+ that contains the known regulatory pairs themselves and their 1-hop neighbors on a noisy 

skeleton 𝐺𝑅𝑁𝑖
′ as the positive subgraphs. 

▪ Meanwhile, randomly select t ∈ TF and g ∈ {TF, G}, (t, g) ∉ L, extract a subgraph 𝑺𝒖𝒃𝒊(𝒕, 𝒈)− containing themselves and their 1-hop 

neighbors on the noisy skeleton GRN′i as the negative subgraphs.

▪ Two general categories of features are used to build node features: 

➢ Explicit featuresfeatures are calculated using the gene expression vector 𝐸𝑖 of gene i, i ∈{TF, G}, it is comprised of :

o the mean (μ), 

o the standard deviation (σ), 

o the quantiles of expression values 𝑄0, 𝑄1, 𝑄2, 𝑄3 and Q4 

o minimum expression value =  𝑄0

o maximum expression value = 𝑄4 .

➢ Structural embedding features are represented as Graph embedding.

o Graph embedding is a learned continuous feature representation for nodes in networks.

o Nod2Vec.

• We developed a framework named EGRC to distinguish

whether the extracted subgraph centered at two nodes contains

the link between the two nodes.

• A pair that links between a transcription factor (TF) and a

target gene and their neighbors are labeled as a positive

subgraph, while an unlinked TF and target gene pair and their

neighbors are labeled as a negative subgraph.

• According to the experiment’s findings, the following factors

may contribute to the GRN prediction power of the EGRC:

(1) using an ensemble of heuristic skeletons.

(2) using graph embedding can capture the topological

structures of the network to predict the links.

(3) improving the pooling layer (SAGPool technique) can

improve a graph classifier's performance.

• We believe that the ability of our proposed method to infer

GRN with higher accuracy will have a more significant impact

on understanding biological systems and disease processes.

Table 3. Comparison of EGRC performance with the existing method using the DREAM5 datasets. The 

best score values are bold-faced.

Figure 1:EGRC Framework. EGRC scheme. Noisy starting skeletons are derived from Spearman’s correlation and mutual information

Figure 2: Extracted subgraph.

Figure 3: SAGPool layer.
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