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Abstract 

Gene regulatory networks (GRNs) play an important function in a variety of cellular processes and 

pathways. Recent advancements in high-throughput biological data gathering have provided fresh platforms 

for studying GRNs, generating significant interest in the mathematical modeling of biological networks. 

An effective GRN inference algorithm can find proper regulatory connections among genes, greatly 

facilitating discovering the basics of how a cell functions and functions, allowing for a unique and improved 

understanding of disease initiation and progression. However, the involvement of protein level interactions 

can refine and validate some of the interactions that are inferred from gene-gene interactions, and hence we 

call our focus a gene-protein regulatory network (GPRN). Consequently, this paper proposes a method to 

select genes that produce proteins that bind to DNA (deoxyribonucleic acid), RNA (ribonucleic acid), or 

other proteins and carbohydrate. The selected genes are used to create three different gene protein regulatory 

networks based on different bindings. Finally, we show a method to filter those relations(edges) by using 

pairwise protein-DNA interaction, protein-RNA interaction and protein-protein interaction tools to reduce 

the noise of the regulatory network. 

 

Introduction 

The nucleus of a cell contains all a live organism’s genetic information (genome). That genome is kept in 

chromosomes, which are lengthy DNA molecules (deoxyribonucleic acid). In human cells, there are 23 

pairs of chromosomes [1]. DNA is the material that makes up genes. The basic physical and functional unit 

of heredity is the gene. Human beings have between 20000 and 25000 genes [2]. Only 3% of the DNA in 

their bodies was translated into proteins, and the remaining genes are thought to be involved in regulating 

other genes [2]. Genes store information about how we look and how our cells function inside our bodies. 

Some genes serve as blueprints for creating protein-like molecules. Many genes, on the other hand, do not 

produce proteins. Instead, each gene performs a unique function in our body. A gene’s DNA contains 

instructions for the cell’s production of proteins. Figure 1 shows an illustration of cells, chromosomes, and 

genes. 
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Proteins are the fundamental building components of our body. Proteins are found in bones, teeth, hair, 

muscles, and blood. Those proteins assist our bodies in growing, functioning effectively, and remaining 

healthy[3]. Each gene in the human may produce up to ten distinct proteins[4]. That means the human will 

have over 300,000 proteins [5].    

    

 

Figure 1. Illustration of cell, chromosomes, and genes. 

The transfer of genetic information in cells from DNA to messenger RNA (mRNA) to protein is described 

by the central dogma of molecular biology. According to the theory, genes determine the sequence of 

mRNA molecules, which specify the sequence of proteins. Because the information held in DNA is 

important to cellular function, the cell safeguards it by copying it as RNA [6]. For every nucleotide it reads 

in the DNA strand, an enzyme adds one to the mRNA strand. Because three mRNA nucleotides correspond 

to one amino acid in the polypeptide sequence, translating this information to a protein is more complicated. 

The conversion process of DNA to protein is described in the following paragraphs. 

A) Transcription: 

Transcription is the process by which information is transferred from one strand of DNA to RNA 

by the enzyme RNA Polymerase. The DNA strand that goes through this process is made up of 

three parts: a promoter, a structural gene, and a terminator [7]. The strand of DNA that synthesizes 

the RNA is known as the template strand, while the other strand is known as the coding strand. The 

promoter is bound by the DNA-dependent RNA polymerase, which catalyzes polymerization in 

the 3′ to 5′ direction. RNA polymerase reads a DNA sequence during transcription and generates a 

corresponding, antiparallel RNA strand. Post-transcriptional alterations are performed on the 

freshly released RNA strand [1]. 

Unlike DNA replication, transcription produces an RNA complement that replaces the RNA uracil 

(U) in all places where the DNA thymine (T) would have occurred. Thus, transcription is the initial 

step in gene expression. A transcript is a segment of DNA that has been transcribed into an RNA 

molecule. Some transcripts serve as structural or regulatory RNAs, while others encode one or 

more proteins. If the transcribed gene encodes a protein, the outcome of transcription is messenger 

RNA (mRNA), which is subsequently utilized to produce that protein during the translation 

process. 
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B)  Translation 

The translation is how mRNA is decoded and translated into a polypeptide sequence, also known 
as a protein. This type of protein synthesis is controlled by the mRNA and performed with the 

assistance of a ribosome, a huge complex of ribosomal RNAs (rRNAs) and proteins. During 

translation, a cell decodes the genetic message of the mRNA and assembles the brand-new 

polypeptide chain [6]. Transfer RNA, or tRNA, translates the sequence of codons on the mRNA 
strand. The primary purpose of tRNA is to transport a free amino acid from the cytoplasm to a 

ribosome connected to the developing polypeptide chain. tRNAs continue to add amino acids to 

the expanding end of the polypeptide chain until they reach a stop codon on the mRNA. The 
ribosome then delivers the finished protein into the cell. Figure 2 shows the steps of transcription 

and translation to produce proteins from genes. 

 

Figure 2.  Steps of transcription and translation of genes. 

 

Gene Regulatory Network (GRN) 

Gene regulation is the process of regulation in which a set of genes in a cell are expressed (turned on) to 

make a functional product, i.e., proteins. Though almost all the cells in our body have the same DNA, each 

cell has a different set of active genes, transforming into different sets of functional RNAs and proteins to 

do some specialized tasks. For example, the human stomach cell creates acids, whereas the liver cell 

produces enzymes that break alcohol into a non-toxic molecule. 

A gene regulatory network (GRN) represents gene regulation using a set of genes and their relevant 

regulatory molecules that interact with each other to determine the function of a cell. GRN represents a 

directed graph that the regulators of gene expression are connected to target gene nodes, and those 

interactions can be represented as edges[8]. Regulators of gene expression constitute transcription factors 

(TF) that can be worked as activators and repressors, RNA binding proteins, regulatory RNAs, etc. [9]. It 

is important to determine regulatory relationships between transcription factors and their target genes to 
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understand biological phenomena ranging from cell growth and division to cell differentiation and 

development [10]. Therefore, reconstruction of GRNs is essential to understand how gene expression 

dysregulation causes some diseases such as cancer [11]. Figure 3 shows the gene expressions and the gene 

regulatory network. 

 

Figure 3. Example of a gene regulatory network. 

 

Gene Protein Regulatory Network (GPRN) 

Gene Regulatory Network (GRN) can be a complex network. Each cell has a different network as they have 

different regulations depending on the cell function. This paper proposed a gene protein regulatory network 

(GPRN) based on the protein interactions with DNA, RNA, and other proteins. Genes are translated into 

proteins, and the proteins can be classified into different classes such as DNA binding proteins, RNA 

binding proteins, and protein-binding proteins. Based on the binding information, we can select a subset of 

active genes or regulating genes and find the interaction between regulating genes with other genes. The 

proposed method will generate three different networks for three types of bindings. In the following 

paragraphs, we describe three different gene regulatory networks. 

 

 

GPRN based on Protein-DNA interactions 

The first network is based on the Protein-DNA interactions. First, we extract the canonical protein sequence 

from a set of genes. A canonical sequence is DNA, RNA, or amino acids that reflect the most common 

choice of base or amino acid at each position. In canonical sequence, each gene is represented by one single 

protein sequence. We extract the canonical sequence from the UniProtKB dataset. After extracting the 

protein sequence, the DNA binding prediction tools [12] are used to select the genes which are producing 

DNA binding proteins or transcription factors. The target genes are turned on or off by these DNA binding 

proteins/transcription factors. Then, a gene regulatory network is inferred using the same idea from the 

author of the GENIE3 algorithm [13]. The GENIE3 algorithm infers the regulators for each target gene 

from the expression data. The importance of each of the transcript factors for activating a certain gene is 

calculated using a tree-based regression method. The inferred network can be noisy as it is created based 

on the expression data only, and it may contain many edges with false positives.  To further purify the 

network, we can obtain the pairwise Protein-DNA interaction probability using the existing tools, i.e., 



 
 

5 | P a g e  
 

DNAproDB [14], FoldX [15]. Figure 4 shows the steps of the gene protein regulatory network based on 

Protein-DNA interactions. 

 

 

Figure 4. Gene Protein Regulatory Network based on Protein-DNA interactions. 

 

GPRN based on Protein-RNA interactions 

The second network is based on the Protein-RNA interactions. Similar to previous architecture, we extract 

the canonical sequence from the set of genes. Then, a set of active genes based on the interaction between 

a protein with RNA using the RNA binding prediction tool [16]. Likewise, we can create the network from 

the expression data and short-listed genes. Further, the network can be filtered using the Protein-RNA 

interaction probabilities. We can obtain the probabilities using Protein-RNA interaction prediction tools, 

i.e., RNAct [17]. Figure 5 shows the steps of the gene protein regulatory network based on Protein-RNA 

interactions. 

 



 
 

6 | P a g e  
 

 

Figure 5. Gene Protein Regulatory Network based on Protein-RNA interactions.  

 

GPRN based on Protein-Protein interactions 

The third network is based on the Protein-Protein interactions. Like the previous two architectures, we 

extract the canonical sequence from the set of genes. First, we select a set of active genes based on the 

interaction between a protein with other proteins using the protein binding prediction tool [18]. Then, we 

create the network from the expression data and short-listed genes that produce proteins that bind with other 

proteins. Further, the network can be filtered using the Protein-Protein interaction probabilities. We can 

obtain the probabilities using Protein-Protein pairwise interaction prediction tools, i.e., published in [19-

21]. Figure 6 shows the steps of the gene protein regulatory network based on Protein-RNA interactions. 



 
 

7 | P a g e  
 

 

Figure 6. Gene Protein Regulatory Network based on Protein-Protein interactions.  

 

Prediction tools: 

We proposed a gene protein regulatory network based on only protein interacting with DNA, RNA, and 
other proteins. It is possible to create a network based on other types of binding, i.e., Carbohydrate-Binding 

proteins, or to create a network with the transposable elements. Here is a brief description of some of the 

tools that can be used to predict the properties of a given protein or genes. 
 

 

DNA binding proteins 
In our lab, we developed a stacking-based machine learning method, called StackDPPred, to effectively 

predict DNA-binding proteins [12]. DNA-binding proteins play an important role in various biological 

processes such as DNA replication, repair, transcription, and splicing. The corresponding code and data can 

be found here: code and data 
 

 

http://cs.uno.edu/~tamjid/
http://cs.uno.edu/~tamjid/Software/StackDPPred/code_data.zip
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RNA binding proteins 
We developed a method called AIRBP, which is designed using an advanced machine learning technique 

called stacking to effectively predict RBPs by utilizing features extracted from evolutionary information, 

physicochemical properties, and disordered properties[16]. RBPs play crucial roles in post-transcriptional 

control of RNAs and RNA metabolism and have diverse roles in various biological processes such as 
splicing, mRNA stabilization, mRNA localization and translation, RNA synthesis, folding-unfolding, 

modification, processing, and degradation. The corresponding code and data can be found here: code and 

data. 
 

 

Peptide-Binding proteins 
Peptide-recognition domains (PRDs) are critical as they promote coupled binding with short peptide motifs 

of functional importance through transient interactions. Therefore, we developed a machine-learning-based 

tool, named PBRpredict, to predict residues in peptide-binding domains from protein sequence alone [18]. 

The proposed predictor is found competitive based on statistical evaluation. The corresponding code and 
data can be found here: code and data. 

 

 

Carbohydrate Binding proteins 

The study of protein-carbohydrate interactions at the residue level is useful in treating many critical 

diseases. We developed a balanced predictor called StackCBPred to predict protein-carbohydrate binding 
sites[22]. The corresponding code and data can be found here: code and data. 

 

 

Transposable Elements  
Transposable Elements (TEs) or jumping genes are the DNA sequences that have an intrinsic capability to 

move within a host genome from one genomic location to another. Studies show that the presence of a TE 

within or adjacent to a functional gene may alter its expression. TEs can also cause an increase in the rate 
of mutation and can even mediate duplications and large insertions and deletions in the genome, promoting 

gross genetic rearrangements. We developed a robust approach for the hierarchical classification of TEs, 

with higher accuracy, using Support Vector Machines (SVM)[22]. The corresponding code and data can be 

found here: code and data. 
 

The above tools are publicly available in the webserver - https://bmll.cs.uno.edu/. Figure 7 shows the 

interface which can be used to submit protein sequences for prediction. 

http://cs.uno.edu/~tamjid/Software/AIRBP/code_data.zip
http://cs.uno.edu/~tamjid/Software/AIRBP/code_data.zip
http://cs.uno.edu/~tamjid/Software/PBRpredict/pbrpredict-suite.zip
http://cs.uno.edu/~tamjid/Software/StackCBPred/code_data.zip
http://cs.uno.edu/~tamjid/Software/classifyte/codedata.zip
https://bmll.cs.uno.edu/
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Figure 7.  Developed Software in BMLL Lab 

 

 

Conclusions 

Gene protein regulatory network is important to understand the function of a cell. In addition, the network 

is important to understand the cellular level’s dynamic behavior and understand the gene that causes 

disease. Therefore, an accurate prediction of the regulatory network by protein level interactions will help 

us understand the complex phenomenon. Further, learning about gene regulation from lab experiments is 

time-consuming and costly. Therefore, a fast and effective computational method is needed to infer the 

gene protein regulatory network. We proposed a new approach to discovering the gene regulatory network 

based on the protein level interactions with other genes in this work. Moreover, we offered a way to reduce 

the noise of the network by removing edges using different machine learning predictors validating protein 

level interactions. Though this manuscript would allow us to systematically apply the developed various 

research tools, in the future, we will merge all these in a pipeline to automate the prediction of the complex 

interaction between genes-protein in a much convenient form. 
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